Near Greenland in the northern hemisphere <span />
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then

Answer:
619.8 N
Explanation:
The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

where
T is the tension
m is the mass of the rock
v is the speed
r is the radius of the circular path
At the beginning,
T = 50.4 N
v = 21.1 m/s
r = 2.51 m
So we can use the equation to find the mass of the rock:

Later, the radius of the string is decreased to
r' = 1.22 m
While the speed is increased to
v' = 51.6 m/s
Substituting these new data into the equation, we find the tension at which the string breaks:

Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.
Answer:
gas is dioatomic
T_f = 330.0 K

Explanation:
Part 1
below equation is used to determine the type Gas by determining
value

where V_i and V_f is initial and final volume respectively
and P_i and P_f are initial and final pressure


\gamma = 1.38
therefore gas is dioatomic
Part 2
final temperature in adiabatic process is given as
](https://tex.z-dn.net/?f=T_f%20%3D%20T_i%2A%5B%5Cfrac%7Bv_i%7D%7BV_f%7D%5D%28%5E%5Cgamma-1%29)
substituing value to get final temperature
![T_f = 260*[\frac{151}{80.6}]^ {(1.38-1)}](https://tex.z-dn.net/?f=T_f%20%3D%20260%2A%5B%5Cfrac%7B151%7D%7B80.6%7D%5D%5E%20%7B%281.38-1%29%7D)
T_f = 330.0 K
Part 3
determine number of moles by using following formula


