Although the moon's distance from earth varies each month because of its eccentric orbit, the moon's mean distance from Earth is nonetheless increasing at the rate of about 3.8 centimeters (1.5 inches) per year
We will use Arrehenius equation
lnK = lnA -( Ea / RT)
R = gas constant = 8.314 J / mol K
T = temperature = 25 C = 298 K
A = frequency factor
ln A = ln (1.5×10 ^11) = 25.73
Ea = activation energy = 56.9 kj/mol = 56900 J / mol
lnK = 25.73 - (56900 / 8.314 X 298) = 2.76
Taking antilog
K = 15.8
Answer:
Project 3.
Explanation:
Project 3's anticipated cost is 12 to 17 million dollars. It is a <em>lower </em>anticipated cost than Project 2 and Project 4, but <em>higher</em> than Project 1 by one million dollars at maximum cost anticipation. Additionally, the percentage of wildlife to benefit is 70-80%, which is <em>second</em> to the most wildlife to benefit which is Project 4 at 75-80%.
And finally, for community support for Project 3 - the chart lists it as high. This outclasses Project 2 and Project 4, but balances with Project 1. However, Project 1 costs 13 to 16 million dollars and <em>only</em> benefits 15-25% of wildlife.
Answer:
6 x 10⁶ g Fe
Explanation:
Step 1: Set up dimensional analysis
7 x 10²⁸ atoms Fe (1 mol Fe/6.02 x 10²³ atoms Fe)(55.85 g Fe/1 mol Fe)
Step 2: Multiply, divide, and cancel out units
atoms Fe and atoms Fe cancel out.
mol Fe and mol Fe cancel out.
We should be left with g Fe.
7 x 10²⁸/6.02 x 10²³ = 116279 mol Fe
116279(55.85) = 6.49 x 10⁶ g Fe
Step 3: Sig figs
There is only 1 sig fig in this problem.
6.49 x 10⁶ g Fe ≈ 6 x 10⁶ g Fe