1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
3 years ago
9

Would it be easier or more difficult (compared to zinc) to recover silver from solution? explain

Chemistry
1 answer:
spin [16.1K]3 years ago
8 0
The rules is that, the more reactive the substance, the harder it is to extract. The reason is mainly due to the fact that you have to find a specific solvent to react the substance only, not the others.Basing on the list of reactivity of metals as shown in the picture, Zn is more reactive than Ag. Then, that means that Ag is easier to recover.

You might be interested in
If we find that there is a linear correlation between the concentration of carbon dioxide in our atmosphere and the global​ temp
loris [4]

Answer:

A

Explanation:

A linear correlation means the increase in one variable cause an increase in the other variable. In a graph, the linear correlation can be demonstrated by a right-slanted straight diagonal line. Therefore if an increase in carbon dioxide causes a directly proportional increase in global temperatures then the two are correlated.

3 0
3 years ago
Which of these cause the build up of volcanic landforms?
finlep [7]
D. ash, cinder, and lava
6 0
3 years ago
Read 2 more answers
Dolomite is a mixed carbonate of calcium and magnesium. Calcium and magnesium carbonates both decompose upon heating to produce
Setler79 [48]

Answer:

72.03 %

Explanation:

Total mass of dolomite = 9.66 g

Let the mass of Magnesium carbonate = x g

The mass of calcium carbonate = 9.66 - x g

Calculation of the moles of Magnesium carbonate as:-

Molar mass of Magnesium carbonate = 122.44 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{x\ g}{84.3139\ g/mol}=\frac{x}{84.3139}\ mol

Calculation of the moles of calcium carbonate as:-

Molar mass of calcium carbonate = 100.0869 g/mol

Thus,

Moles= \frac{9.66 - x\ g}{100.0869\ g/mol}=\frac{9.66 - x}{100.0869}\ mol

According to the reaction shown below:-

MgCO_3\rightarrow MgO+CO_2

CaCO_3\rightarrow CaO+CO_2

In both the cases, the oxides formed from the carbonates in the 1:1 ratio.

So, Moles of MgO = \frac{x}{84.3139}\ mol

Molar mass of MgO = 40.3044 g/mol

Thus, Mass = Moles*Molar mass = \frac{x}{84.3139}\times 40.3044 \ g

Moles of CaO = \frac{9.66 - x}{100.0869}\ mol

Molar mass of CaO = 56.0774 g/mol

Thus, Mass = Moles*Molar mass = \frac{9.66 - x}{100.0869}\times 56.0774 \ g

Given that total mass of the oxide = 4.84 g

Thus,

\frac{x}{84.3139}\times 40.3044 +\frac{9.66 - x}{100.0869}\times 56.0774=4.84

\frac{40.3044x}{84.3139}+56.0774\times \frac{-x+9.66}{100.0869}=4.84

-694.1618435x+45673.48749\dots =40843.38968\dots

x=\frac{4830.09780\dots }{694.1618435}

x=6.9582

Thus, the mass of Magnesium carbonate = 6.9582 g

\%\ mass=\frac{Mass_{MgCO_3}}{Total\ mass}\times 100

\%\ mass=\frac{6.9582}{9.66}\times 100=72.03\ \%

3 0
3 years ago
Urea, (NH2)2CO, is a product of metabolism of proteins. An aqueous solution is 37.2% urea by mass and has a density of 1.032 g/m
Feliz [49]

Answer:

The molarity of urea in this solution is 6.39 M.

Explanation:

Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>;  that is

molarity = moles of solute ÷ liters of solution

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.

Our first step is to calculate the moles of urea in 100 grams of the solution,

using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is

60.06 g/mol ÷ 37.2 g = 0.619 mol

Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.

1.032 g/mL ÷ 100 g = 96.9 mL

This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.

0.619 mol/96.9 mL × 1000 mL= 6.39 M

Therefore, the molarity of the solution is 6.39 M.

4 0
3 years ago
According to the electron-cloud model of the atom, an orbital is a
Aleks [24]

Answer : Option 4) Region of the most probable electron location.


Explanation : As per the electron cloud model of the atom, an orbital is a region where the probability of finding an electron is highest. According to this model which was used to identify the probable location of the electrons when they go around the nucleus of an atom.


This electron cloud model was different from the older Bohr atomic model by Niels Bohr.

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which is defined as the measure of quantity proportional to the number of atoms
    11·1 answer
  • If 15.60g of a hydrated compound is heated in an oven for several hours, its mass drops to 8.63g. Assuming that the reduction in
    5·1 answer
  • Classic c fires include what?
    10·1 answer
  • A gas occupied 23.55 L at 118.2 Celsius. At what temp would the gas occupied 43.8 L
    12·1 answer
  • Covalent bonds form between hydrogen and oxygen atoms in a water molecule as a result of:
    11·1 answer
  • 2. Which number is not a coefficient in the equation,<br> 2C6H14+ 19O2,-- 12CO2,+ 14H2O?
    8·1 answer
  • Heyyy, please help, I only need the sentences for the words please. Thank uuu :)
    8·2 answers
  • hydrogen sulphide and water molecules have the same shape. however the bond angle in water is greater than the bond angle in hyd
    6·1 answer
  • WILL GIVE BRAINLIEST
    11·1 answer
  • A compound contains oxygen and chlorine. Its molecular mass is 166.9g. What is the molecular formula if its empirical formula is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!