Answer:
19.6 g is the mass of methanol
Explanation:
Density of methanol is 0.787 g/mL.
Density means mass / volume
Methanol density = Methanol mass / Methanol volume.
Let's replace in the formula
0.787 g/mL = Methanol mass / 25 mL
0.787 g/mL . 25 mL = Methanol mass → 19.6 g
The compound NaH2PO4 name is
sodium dihydrogen phosphate
Explanation
This name is arrived at by using the IUPAC rules of naming compound
1. the metal (sodium)is named first followed by the ligand ( hydrogen and phosphate)
Ligand are molecules that are attached to the metal center.
2. ligand are named using alphabetical order(for our case h for hydrogen come before p for phosphate hence hydrogen is named first)
3. Prefix di is used since hydrogen are two
hence the name of the compound is Sodium dihydrogen phosphate
Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>
.774atm
First, look at what you have and look at the equations you can use to solve this problem. The best equation would be PV=nRT.
P being pressure, V being volume, n being moles, R being the gas constant, and T being temperature.
Before you start doing any of the math, make sure of two things. Since you're looking for pressure, you'll need a gas constant. When I did the problem, I used the gas constant of atm or atmospheres which is .0821.
Also! Remember to always convert celsius into kelvin, to do this, add 273 to the given celsius degree. After this is all set and done, your equation should look like this:
P = 
The reason that the equation is divided by the volume is due to the fact that you need to isolate the variable or pressure.
Multiply everything on the top and divide by the bottom and you should receive the final answer of .774atm.
Hope this helps!
Answer:
3). 1.30 × 10^(24) molecules
Explanation:
From avogadro's law which state that equal volume of all gases at the same temperature and pressure contain the same number of molecules.
We can relate it to this question as;
V₁/n₁ = V₂/n₂
Where;
V₁ is initial volume
n₁ is initial number of molecules
V₂ is final volume
n₂ is final number of molecules
Thus at STP, we have V₁ = V₂ and as such Plugging in the relevant values gives;
5/(1.30 x 10^(24)) = 5/n₂
n₂ = 1.30 x 10^(24) molecules