1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreyy89
1 year ago
9

1. A block of mass 0.4kg resting on the top of an inclined plane of height 20m starts to slide down on the surface of the inclin

e to its foot, and then continues its slide horizontally. At a distance of 5m from the foot of the incline there is another block of the same mass resting on the horizontal surface to undergo an elastic collision. Next to the second block, there is a light spring of constant k = 4000N/m fixed freely against a wall. The spring is supposed to make a head-on collision with the second block. See the arrangements as in 1. Assuming all surfaces being frictionless, (a) calculate the kinetic energy of the firs block just at the foot of the incline; (b) calculate the kinetic and gravitational potential energies of the first block halfway down the incline; (c) calculate the speeds of the two blocks just after their collision; (d) compute the maximum compression of the spring resulted from its collision with the second block; (e) determine the maximum work done by the spring on the second block.​
Physics
1 answer:
Alik [6]1 year ago
7 0

The kinetic energy of the first block just at the foot of the incline is 78.4J, the kinetic and gravitational potential energies of the first block halfway down the incline are same, and which is equal to 39.2J. The speeds of the two blocks just after their collision interchange with the values before collision.

To find the answer, we need to know about the concept of collision and kinetic energy.

<h3>How to find the kinetic energy of the first block just at the foot of the incline?</h3>
  • Given that, the block of mass 0.4kg resting on the top of an inclined plane of height 20m.
  • Thus, at the top of the incline it has a potential energy, and the kinetic energy will be equal to zero, or we can say that the total energy of the system is equal to the potential energy at topmost point.

                 TE=KE+PE\\T=PE=m_1gh=(0.4*9.8*20)=78.4 J

  • We have to find the kinetic energy of the first block just at the foot of the incline, and at the bottom point the PE=0, or we can say that the total energy or the potential energy is converted into kinetic energy.

                   TE=KE=78.4J

<h3>What is the kinetic and gravitational potential energies of the first block halfway down the incline?</h3>
  • At the halfway, the PE will be,

                          U'=m_1gh'=mg\frac{h}{2} \\U'=39.2J

  • As we know that, the energy is conserved at each point of the motion.

                      TE=78.4 J\\KE'+PE'=78.4J\\KE'=78-U'=78.4-39.2=39.2J

<h3>How to find the speeds of the two blocks just after their collision?</h3>
  • We have the KE at bottom point as, 78.4J. Thus, the velocity of first block at the bottom before collision will be,

                            KE=\frac{1}{2} mv^2=78.4J\\v=\sqrt{\frac{2KE}{m} } =4m/s

  • This is the velocity of the block 1 of mass m1 before collision, we can say, u1.
  • As we know that, the 2 nd block of mass m2 is at rest, thus, u2=0.
  • Given that, the collision is elastic. Thus, both the KE and the momentum will be conserved.

               \frac{1}{2}m_1u_1^2+ \frac{1}{2}m_2u_2^2=\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2

                 m_1u_1+m_2u_2=m_1v_1+m_2v_2

  • We have,

                            m_1=m_2=m\\u_1=4m/s\\u_2=0\\v_1=?\\v_2=?

  • Substituting this in both the equations, we get,

                       \frac{1}{2}m*4^2=\frac{1}{2}m(v_1^2+v_2^2)\\(v_1^2+v_2^2)=16  from resolving KE equation.

                     

                        4m=m(v_2+v_1)\\4=v_2+v_1\\v_1=4-v_2 From resolving momentum conservation.

  • solving both, we get,

                            v_2=4m/s\\v_1=0

Thus, we can conclude that, the kinetic energy of the first block just at the foot of the incline is 78.4J, the kinetic and gravitational potential energies of the first block halfway down the incline are same, and which is equal to 39.2J. The speeds of the two blocks just after their collision interchange with the values before collision.

Learn more about collision here:

brainly.com/question/28093951

#SPJ1

You might be interested in
Why do you ask me that’s all me the moon seem like they’re walking on Spring tomorrow on earth we are from your tractor to the g
nataly862011 [7]
The moon is talking to thecat at night that’s why
3 0
3 years ago
How are kids made? my teacher asked us this question
Kazeer [188]
A single sperm and the mother's egg cell meet in the fallopian tube. When the single sperm enters the egg, conception occurs. The combined sperm and egg is called a zygote. The zygote contains all of the genetic information (DNA) needed to become a baby.
7 0
3 years ago
A natural force of attraction exerted by the earth upon objects, that pulls
Mashutka [201]

A natural force of attraction exerted by the earth upon objects, that pulls objects towards earth's center is called<u> </u><u>G</u><u>ravitational</u><u> </u><u>force</u><u> </u><u>.</u>

6 0
3 years ago
Why are the wires twisted around each other in twisted pair cable?
Goryan [66]

The wires are twisted around each other in a twisted pair cable for the purpose of blocking off any external electromagnetic interference.

A twisted-pair cable is a form of cable system used for telecom services as well as most current wired networks. Twisted pairs are composed of two insulated copper wires that are been twisted together. The circuit is formed by a twisted pair of wires that may carry data. These pairs are twisted to prevent interference or noise caused by neighboring pairs.

Learn more about twisted pair cable here:

brainly.com/question/5504231?referrer=searchResults

5 0
2 years ago
A meter stick balances horizontally on a knife-edge at the 51 cm mark. With two nickels stacked over the 6.0 cm mark, the stick
Oliga [24]

Answer:

65g

Explanation:

Two main conditions for equilibrium are:

I. The resultant force must be equal to zero. That is, sum of the forces acting in one direction about a point must be equal to the sum of the forces acting in the opposite direction about the same point.

II. The resultant moment must be equal to zero. That is, sum of the moments in one direction about a point must be equal to the sum of the moments in another direction about the same point.

For the above question,

the 51cm mark is the point where the resultant weight of the meter stick lies,

the pivot or point is the 45cm mark where the stick balanced when 2 nickels ( total mass (5.0g x 2) 10g were placed at the 6cm mark.

Using the conversion factor:

1000g(1kg) = 10N, we can convert mass to weight, calculate the weight of the meter stick then reconvert to mass.

That is,

mass of 2 nickels = 10g = 10/1000 = 0.01N.

Moment = Force x distance from line of force to pivot of rotation

Applying the principle of equilibrium,

Moment of left side = Moment of right side

0.01 x (45-6) = W x (51-45)

Where W = weight of the meter stick

W x 6 = 0.01 x 39

W x 6 = 0.39

W = 0.39/6

W= 0.065N

Therefore, mass of meter stick = 0.065 x 1000 = 65g.

4 0
3 years ago
Other questions:
  • What is the voltage output (in V) of a transformer used for rechargeable flashlight batteries, if its primary has 480 turns, its
    8·1 answer
  • The coefficient of cubical expansion of a substance depends upon
    9·1 answer
  • Two tiny conducting spheres are identical and carry charges of -18.4 µC and +53.0 µC. They are separated by a distance of 2.73 c
    7·1 answer
  • 1) Halving the distance (i.s., decreasing by a factor of two) between two charged objects will cause the electrical force betwee
    8·1 answer
  • Multiple Select
    6·2 answers
  • Daniel has a bill of 2750 on his credit card. If interest is charged at a rate of 15% p.a., calculate the amount of interest tha
    12·1 answer
  • An ant sits on the back of a mouse. The mouse carries the ant across the floor for a distance of 150m to her bedroom. How much w
    11·1 answer
  • A piece of copper wire with thin insulation, 200 m long and 1.00 mm in diameter, is wound onto a plastic tube to form a long sol
    6·1 answer
  • How do mathematical models help us learn about conditions inside the sun?
    5·1 answer
  • What is The force of gravity between the Aeneas and earth
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!