1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreyy89
1 year ago
9

1. A block of mass 0.4kg resting on the top of an inclined plane of height 20m starts to slide down on the surface of the inclin

e to its foot, and then continues its slide horizontally. At a distance of 5m from the foot of the incline there is another block of the same mass resting on the horizontal surface to undergo an elastic collision. Next to the second block, there is a light spring of constant k = 4000N/m fixed freely against a wall. The spring is supposed to make a head-on collision with the second block. See the arrangements as in 1. Assuming all surfaces being frictionless, (a) calculate the kinetic energy of the firs block just at the foot of the incline; (b) calculate the kinetic and gravitational potential energies of the first block halfway down the incline; (c) calculate the speeds of the two blocks just after their collision; (d) compute the maximum compression of the spring resulted from its collision with the second block; (e) determine the maximum work done by the spring on the second block.​
Physics
1 answer:
Alik [6]1 year ago
7 0

The kinetic energy of the first block just at the foot of the incline is 78.4J, the kinetic and gravitational potential energies of the first block halfway down the incline are same, and which is equal to 39.2J. The speeds of the two blocks just after their collision interchange with the values before collision.

To find the answer, we need to know about the concept of collision and kinetic energy.

<h3>How to find the kinetic energy of the first block just at the foot of the incline?</h3>
  • Given that, the block of mass 0.4kg resting on the top of an inclined plane of height 20m.
  • Thus, at the top of the incline it has a potential energy, and the kinetic energy will be equal to zero, or we can say that the total energy of the system is equal to the potential energy at topmost point.

                 TE=KE+PE\\T=PE=m_1gh=(0.4*9.8*20)=78.4 J

  • We have to find the kinetic energy of the first block just at the foot of the incline, and at the bottom point the PE=0, or we can say that the total energy or the potential energy is converted into kinetic energy.

                   TE=KE=78.4J

<h3>What is the kinetic and gravitational potential energies of the first block halfway down the incline?</h3>
  • At the halfway, the PE will be,

                          U'=m_1gh'=mg\frac{h}{2} \\U'=39.2J

  • As we know that, the energy is conserved at each point of the motion.

                      TE=78.4 J\\KE'+PE'=78.4J\\KE'=78-U'=78.4-39.2=39.2J

<h3>How to find the speeds of the two blocks just after their collision?</h3>
  • We have the KE at bottom point as, 78.4J. Thus, the velocity of first block at the bottom before collision will be,

                            KE=\frac{1}{2} mv^2=78.4J\\v=\sqrt{\frac{2KE}{m} } =4m/s

  • This is the velocity of the block 1 of mass m1 before collision, we can say, u1.
  • As we know that, the 2 nd block of mass m2 is at rest, thus, u2=0.
  • Given that, the collision is elastic. Thus, both the KE and the momentum will be conserved.

               \frac{1}{2}m_1u_1^2+ \frac{1}{2}m_2u_2^2=\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2

                 m_1u_1+m_2u_2=m_1v_1+m_2v_2

  • We have,

                            m_1=m_2=m\\u_1=4m/s\\u_2=0\\v_1=?\\v_2=?

  • Substituting this in both the equations, we get,

                       \frac{1}{2}m*4^2=\frac{1}{2}m(v_1^2+v_2^2)\\(v_1^2+v_2^2)=16  from resolving KE equation.

                     

                        4m=m(v_2+v_1)\\4=v_2+v_1\\v_1=4-v_2 From resolving momentum conservation.

  • solving both, we get,

                            v_2=4m/s\\v_1=0

Thus, we can conclude that, the kinetic energy of the first block just at the foot of the incline is 78.4J, the kinetic and gravitational potential energies of the first block halfway down the incline are same, and which is equal to 39.2J. The speeds of the two blocks just after their collision interchange with the values before collision.

Learn more about collision here:

brainly.com/question/28093951

#SPJ1

You might be interested in
The word gymnosperm comes from two Greek words: gymno, meaning bare, and sperm, meaning_____ . Unlike other seed plants, gymnosp
FrozenT [24]

Answer:

Seed, Fruit, Leaves

Explanation:

8 0
2 years ago
Which is best supported by the data in the chart? Current W flows at a higher rate than Current Z. Current Y flows at a lower ra
LekaFEV [45]
There is no chart provided in this statement. However, the current that flows within an electrically charged item is dependent on how it is arranged. There are two kinds of current and these are, parallel and circuit currents. Current that flows in  parallel current is less than when it is farther away from the electric source; current that flows in a series current flows at a constant rate regardless of how far it is from the electrical source.
7 0
2 years ago
Read 2 more answers
Which theory do scientists believe MOST LIKELY explains the creation of the universe?
kati45 [8]

Answer:

1st one is: A

2nd one is: B

3 0
3 years ago
How does the rotation of a galaxy result in spectral line broadening?
IRISSAK [1]

Answer:

Explanation:

Normal galaxies are made up of stars and (in the case of spiral and irregular galaxies) gas and dust. Their spectra consist of the sum of the spectra of these components.

The optical spectra of normal stars are continuous spectra overlaid by absorption lines (Figure 1). There are two factors to consider when adding up the spectra of a number of stars to produce the spectrum of a galaxy:

Different types of star have different absorption lines in their spectra. When the spectra are added together, the absorption lines are 'diluted' because a line in the spectrum of one type of star may not appear in the spectra of other types.

Doppler shifts can affect all spectral lines. All lines from a galaxy share the red-shift of the galaxy, but Doppler shifts can also arise from motions of objects within the galaxy. As a result, the absorption lines become broader and shallower. We explain below how this Doppler broadening comes about.

HII regions in spiral and irregular galaxies (though not, of course, ellipticals) shine brightly and contribute significantly to the spectrum of the galaxy. The optical spectrum of an HII region consists mainly of emission lines, as in Figure 2. When the spectra of the HII regions and the stars of a galaxy are added together, the emission lines from the HII regions tend to remain as prominent features in the spectrum unless a line coincides with a stellar absorption line. There are Doppler shift effects, however, as described for stellar absorption lines, and hence emission lines too are broadened because of the motion of HII regions within a galaxy.

Box 1: Doppler Broadening

The Doppler effect causes wavelengths to be lengthened when the source is moving away from the observer (red-shifted) and shortened when the source is moving towards the observer (blue-shifted).

Light from an astrophysical source is the sum of many photons emitted by individual atoms. Each of these atoms is in motion and so their photons will be seen as blue- or red-shifted according to the relative speeds of the atom and the observer. For example, even though all hydrogen atoms emit H photons of precisely the same wavelength, an observer will see the photons arrive with a spread of wavelengths: the effect is to broaden the H spectral line - called Doppler broadening.

In general, if the emitting atoms are in motion with a range of speeds Δν along the line of sight to the observer (the velocity dispersion) then the Doppler broadening is given by

where c is the speed of light, and λ is the central wavelength of the spectral line.

Why would the atoms be in motion? An obvious reason is that they are 'hot'. Atoms in a hot gas, for example, will be moving randomly with a range of speeds related to the temperature of the gas. For a gas of atoms of mass m at a temperature T, the velocity dispersion is given by

where k is the Boltzmann constant (1.38 × 10−23 J K−1).

4 0
3 years ago
Draw the Free- Body diagram of the 37 kilogram glass falling to the floor in a vacuum.
Alexus [3.1K]

Answer:

362.6 N

Explanation:

F_{g}=mg

F_{g}=37\cdot9.8

F_{g}=362.6\ N

Therefore, the force that the glass hits the floor with is 362.6 N

5 0
3 years ago
Other questions:
  • Describe how you can use tempenture to compare how much thermal energy two objects have
    15·1 answer
  • What are some physical properties of a star
    14·2 answers
  • Ice has a specific heat of 2090 J/(kg C) and water has a specific heat of 4186 J/(kg C). Water has a latent heat of fusion of 3.
    5·1 answer
  • Give 2 examples of mountain ranges in the world that have been caused by folding
    7·1 answer
  • Explain how longitudinal waves and transverse waves are similar to each other and different from each other.
    6·1 answer
  • I have 15 minutes left to answer someone pls help, thank you very much.
    7·1 answer
  • In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give? Let's find out by doing a
    6·1 answer
  • Gamma rays
    14·1 answer
  • 3 A picture is supported by two vertical strings; if the weighi
    9·1 answer
  • If you increase the frequency of a wave by 5x whats it’s period?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!