Answer: 15m/s
Explanation: <u>Average</u> <u>Velocity</u> is vector describing the total displacement of an object and the time taken to change its position. It is represented as:

At t₁ = 1.0s, displacement x₁ is:

x(1) = 28
At t₂ = 4.0s:

x(4) = 73
Then, average speed is

v = 15
The average velocity of a car between t₁ = 1s and t₂ = 4s is 15m/s
This is an interesting (read tricky!) variation of Rydberg Eqn calculation.
Rydberg Eqn: 1/λ = R [1/n1^2 - 1/n2^2]
Where λ is the wavelength of the light; 1282.17 nm = 1282.17×10^-9 m
R is the Rydberg constant: R = 1.09737×10^7 m-1
n2 = 5 (emission)
Hence 1/(1282.17 ×10^-9) = 1.09737× 10^7 [1/n1^2 – 1/25^2]
Some rearranging and collecting up terms:
1 = (1282.17 ×10^-9) (1.09737× 10^7)[1/n2 -1/25]
1= 14.07[1/n^2 – 1/25]
1 =14.07/n^2 – (14.07/25)
14.07n^2 = 1 + 0.5628
n = √(14.07/1.5628) = 3
The remains of Mesosaurus- a crocodile-like reptilian tells United States that South America, Africa and Antarctica were once joined along which implies they were once an enormous continent. However, because of the idea called the geological phenomenon, this one massive continent began to break so making individual continents.
Answer: Tension = 53.6N
Explanation:
Given that
Height h = 1 m
Time t = 1.7 s.
Mass m = 5.1 kg
From the equation of the motion we can get the acceleration of the elevator:
h = X0+ V0t + at2/2;
Th elevator starts from rest with a constant upward acceleration. Initial velocity Vo = 0, also Xo = 0; thus
a = 2h/t2 = 2 × 1/1.7^2
a = 0.69 m/s2.
Then we can find the tension in the cord by using the formula
T = mg + ma
= 5.1 (9.8 + 0.69)
= 5.1 × 10.5
= 53.6N