The acceleration of the first block (4 kg) is -9.8 m/s².
The given parameters:
- <em>Mass of the first block, m₁ = 4.0 kg</em>
- <em>Mass of the second block, m₂ = 2.0 kg</em>
The net force on the system of the two blocks is calculated as follows;

where;
- <em>T </em><em>is the tension in the connecting string due weight of the first block</em>

Thus, the acceleration of the first block (4 kg) is -9.8 m/s².
Learn more about net force on two connected blocks here: brainly.com/question/13539944
Current is created when charges are quickened by an electric field to move where the position of lower temperature. An electric current is a stream of electric charge. In electric circuits, this charge is regularly conveyed by moving electrons in a wire.
a) For the motion of car with uniform velocity we have ,
, where s is the displacement, u is the initial velocity, t is the time taken a is the acceleration.
In this case s = 520 m, t = 223 seconds, a =0 
Substituting

The constant velocity of car a = 2.33 m/s
b) We have 
s = 520 m, t = 223 seconds, u =0 m/s
Substituting

Now we have v = u+at, where v is the final velocity
Substituting
v = 0+0.0209*223 = 4.66 m/s
So final velocity of car b = 4.66 m/s
c) Acceleration = 0.0209 
Answer:
a An increase in the speed will lower the internal pressure
Explanation:
Bernoulli's fluid formula

where
P = Pressure
ρ = Density of fluid
g = Acceleration due to gravity
h = Height
v = Velocity of fluid
If there is no change in height then we get

According to the Bernoulli's principle when the speed of the fluid is larger in a region of streamline flow the pressure is smaller in that region. From the above equation it can be seen that increase in speed should simultaneously reduce pressure in order for their sum to be constant.
Answer:
The correct solution is "14.6875 kg".
Explanation:
Given values:
Force,
F = 47.0 N
Acceleration,
a = 3.20 m/s²
Now,
⇒ 
or,
⇒ 
⇒ 
⇒ 
⇒ 