Answer:
2.28 × 10^-3 mol/L
Explanation:
The equation for the equilibrium is
CN^- + H2O ⇌ HCN + OH^-
Ka = 4.9 × 10^-10
KaKb = Kw
4.9 × 10^-10 Kb = 1.00 × 10^-14
Kb = (1.00 × 10^-14)/(4.9 × 10^-10) = 2.05 × 10^-5
Now, we can set up an ICE table
CN^- + H2O ⇌ HCN + OH^-
I/(mol/L) 0.255 0 0
C/(mol/L) -x +x +x
E/(mol/L) 0.255 - x x x
Ka = x^2/(0.255 - x) = 2.05 × 10^-5
Check for negligibility
0.255/(2.05 × 10^-5) = 12 000 > 400. ∴ x ≪ 0.255
x^2 = 0.255(2.05 × 10^-5) = 5.20 × 10^-6
x = sqrt(5.20 × 10^-6) = 2.28 × 10^-3
[OH^-] = x mol/L = 2.28 × 10^-3 mol/L
<h3>Balanced equation :
2C₂H₆ (g) + 7O₂ (g) ⟶ 4CO₂ (g) + 6H₂O (ℓ)</h3><h3>Further explanation</h3>
Alkanes are saturated hydrocarbons that have single bonds in chains
General formula for alkanes :

Hydrocarbon combustion reactions (specifically alkanes)

So that the burning of ethane with air (oxygen):

2C₂H₆ (g) + 7O₂ (g) ⟶ 4CO₂ (g) + 6H₂O (ℓ)
or we can use mathematical equations to solve equilibrium chemical equations by giving the coefficients for each compound involved in the reaction
C₂H₆ (g) + aO₂ (g) ⟶ bCO₂ (g) + cH₂O (ℓ)
C : left 2, right b ⇒ b=2
H: left 6, right 2c⇒ 2c=6⇒ c= 3
O : left 2a, right 2b+c⇒ 2a=2b+c⇒2a=2.2+3⇒2a=7⇒a=7/2
Answer:
8.13 ×10²³ atoms
Explanation:
Given data:
Mass of magnesium = 32.45 g
Number of atoms = ?
Solution:
Number of moles of Mg:
Number of moles = mass/molar mass
Number of moles = 32.45 g/ 24 g/mol
Number of moles = 1.35 mol
Number of atoms:
1 mole contain 6.022×10²³ atoms
1.35 mol × 6.022×10²³ atoms/ 1mol
8.13 ×10²³ atoms
Answer:

Explanation:
Hello there!
In this case, since the titration of acids like KHP with bases like NaOH are performed in a 1:1 mole ratio, it is possible for us to know that their moles are the same at the equivalence point, and the concentration, volume and moles are related as follows:

Thus, by solving for the volume of the base as NaOH, we obtain:

Best regards!