For the same amount of energy, the number of photons in red light will be greater than the number of photons in blue light.
This is because the energy carried by a photon is inversely proportional to the wavelength of the photon. A longer wavelength means there is a lower energy in the photons and a shorter wavelength means that there is a higher energy. Therefore, in order for the photons to deliver one joule of energy, more of the red light photons will be required.
a. 34 mL; b. 110 mL
a. A tablet containing 150 Mg(OH)₂
Mg(OH)₂ + 2HCl ⟶ MgCl₂ + 2H₂O
<em>Moles of Mg(OH)₂</em> = 150 mg Mg(OH)₂ × [1 mmol Mg(OH)₂/58.32 mg Mg(OH)₂
= 2.572 mmol Mg(OH)₂
<em>Moles of HCl</em> = 2.572 mmol Mg(OH)₂ × [2 mmol HCl/1 mmol Mg(OH)₂]
= 5.144 mmol HCl
Volume of HCl = 5.144 mmol HCl × (1 mmol HCl/0.15 mmol HCl) = 34 mL HCl
b. A tablet containing 850 mg CaCO₃
CaCO₃ + 2HCl ⟶ CaCl₂ + CO₂ + H₂O
<em>Moles of CaCO₃</em> = 850 mg CaCO₃ × [1 mmol CaCO₃/100.09 mg CaCO₃
= 8.492 mmol CaCO₃
<em>Moles of HCl</em> = 8.492 mmol CaCO₃ × [2 mmol HCl/1 mmol CaCO₃]
= 16.98 mmol HCl
Volume of HCl = 16.98 mmol HCl × (1 mL HCl/0.15 mmol HCl) = 110 mL HCl
When a sample of a gas is heated in a sealed, rigid
container from 200 degree Kelvin to 400 degree Kelvin, the pressure exerted by
the gas is increased by a factor 2. Heating any gas actually increases the
volume of the gas within a container. As the temperature of the gas rises, the
molecules of the gas start moving faster and start striking the walls of the
container in which it is kept with more force. The volume of the container
tries to expand to accommodate the fast colliding molecules of the gas.
For that you have to use the Aufbau principle
For example, writing the electronic configuration of Fe(28)
I recommend that you memorize the aufbau principle. Once you learn it, you don’t need anything else except the atomic number of the element to write it’s electronic configuration.
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The solutions in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas. Liquids are represented by (l) and gases are represented by (g).
The balanced chemical reaction is:
