1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
9

A) One Strategy in a snowball fight the snowball at a hangover level ground. While your opponent is watching this first snowfall

, you throw a second snowball at a low angle and time it to arrive at the same time as the first. Assume both snowballs are the one with the same initial speed 14.1 m/s. The first snow ball is thrown at an angle of 52° above the horizontal. At what angle Sure you throw the second snowball to make ahead the same point as the first? Acceleration of gravity is 9.8 m/s^2. Answer in units of °.
b) How many seconds after the first snowball should be through the second so that they arrive on target at the same time? Answer in units of s.
Physics
1 answer:
Alexandra [31]3 years ago
4 0

Answers:

a) \theta_{2}=38\°

b) t=0.495 s

Explanation:

This situation is a good example of the projectile motion or parabolic motion, in which the travel of the snowball has two components: <u>x-component</u> and <u>y-component</u>. Being their main equations as follows for both snowballs:

<h3><u>Snowball 1:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{1} t_{1}   (1)

Where:

V_{o}=14.1 m/s is the initial speed  of snowball 1 (and snowball 2, as well)

\theta_{1}=52\° is the angle for snowball 1

t_{1} is the time since the snowball 1 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (2)

Where:

y_{o}=0  is the initial height of the snowball 1 (assuming that both people are only on the x axis of the frame of reference, therefore the value of the position in the y-component is zero.)

y=0  is the final height of the  snowball 1

g=-9.8m/s^{2}  is the acceleration due gravity (always directed downwards)

<h3><u>Snowball 2:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{2} t_{2}   (3)

Where:

\theta_{2} is the angle for snowball 2

t_{2} is the time since the snowball 2 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{2} t_{2}+\frac{gt_{2}^{2}}{2}   (4)

Having this clear, let's begin with the answers:

<h2>a) Angle for snowball 2</h2>

Firstly, we have to isolate t_{1} from (2):

0=0+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (5)

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}   (6)

Substituting (6) in (1):

x=V_{o}cos\theta_{1}(-\frac{2V_{o}sin\theta_{1}}{g})   (7)

Rewritting (7) and knowing sin(2\theta)=sen\theta cos\theta:

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{1})   (8)

x=-\frac{(14.1 m/s)^{2}}{-9.8 m/s^{2}} sin(2(52\°))   (9)

x=19.684 m   (10)  This is the point at which snowball 1 hits and snowball 2 should hit, too.

With this in mind, we have to isolate t_{2} from (4) and substitute it on (3):

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}   (11)

x=V_{o}cos\theta_{2} (-\frac{2V_{o}sin\theta_{2}}{g})   (12)

Rewritting (12):

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{2})   (13)

Finding \theta_{2}:

2\theta_{2}=sin^{-1}(\frac{-xg}{V_{o}^{2}})   (14)

2\theta_{2}=75.99\°  

\theta_{2}=37.99\° \approx 38\°  (15) This is the second angle at which snowball 2 must be thrown. Note this angle is lower than the first angle (\theta_{2} < \theta_{1}).

<h2>b) Time difference between both snowballs</h2>

Now we will find the value of t_{1} and t_{2} from (6) and (11), respectively:

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}  

t_{1}=-\frac{2(14.1 m/s)sin(52\°)}{-9.8m/s^{2}}   (16)

t_{1}=2.267 s   (17)

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}  

t_{2}=-\frac{2(14.1 m/s)sin(38\°)}{-9.8m/s^{2}}   (18)

t_{2}=1.771 s   (19)

Since snowball 1 was thrown before snowball 2, we have:

t_{1}-t=t_{2}   (20)

Finding the time difference t between both:

t=t_{1}-t_{2}   (21)

t=2.267 s - 1.771 s  

Finally:

t=0.495 s  

You might be interested in
Two scientists are discussing their beliefs about something they cannot observe
svetoff [14.1K]
Could it be hypothesis?
5 0
3 years ago
Read 2 more answers
An ideal spring hangs from the ceiling. A 1.95 kg mass is hung from the spring, stretching the spring a distance d=0.0865 m from
uranmaximum [27]

Answer:

kinetic energy = 0.1168 J

Explanation:

From Hooke's law, we know that ;

F = kx

k = F/x

We are given ;

Mass; m = 1.95 kg

Spring stretch; d = x = 0.0865

So, Force = mg = 1.95 × 9.81

k = 1.95 × 9.81/0.0865 = 221.15 N/m

Now, initial energy is;

E1 = mgL + ½k(x - L)²

Also, final energy; E2 = ½kx² + ½mv²

From conservation of energy, E1 = E2

Thus;

mgL + ½k(x - L)² = ½kx² + ½mv²

Making the kinetic energy ½mv² the subject, we have;

½mv² = mgL + ½k(x - L)² - ½kx²

We are given L=0.0325 m

Plugging other relevant values, we have ;

½mv² = (1.95 × 9.81 × 0.0325) + (½ × 221.15(0.0865 - 0.0325)² - ½(221.15 × 0.0865²)

½mv² = 0.62170875 + 0.3224367 - 0.82734979375

½mv² = 0.1168 J

7 0
3 years ago
The hypotenuse of a right triangle is 29.0 centimeters. The length of one of its legs is 20.0 centimeters. What is the length of
Kisachek [45]

square root (29 squared - 20 squared)

Pythagoras' theorem

5 0
2 years ago
Read 2 more answers
How does the theory of plate tectonics explain these similarities of location?
Nookie1986 [14]
<span>he theory states that Earth's outermost layer, the lithosphere, is broken into 7 large, rigid pieces called plates: the African, North American, South American, Eurasian, Australian, Antarctic, and Pacific plates. Several minor plates also exist, including the Arabian, Nazca, and Philippines plates. The plates are all moving in different directions and at different speeds</span>
7 0
3 years ago
What are the similarities between strong nuclear force and weak nuclear force
Artemon [7]
Alike because they both act on the quarks making up the nucleons and they have very short ranges. The Strong Nuclear Force is an attractive force between protons and neutrons that keep the nucleus together and the Weak Nuclear Force is responsible for the radioactive decay of certain nuclei. Which also makes them very different
7 0
3 years ago
Other questions:
  • Will give brainliest!!
    7·1 answer
  • A form of erosion in which particles of sand or dust rub across the surface of rocks.
    13·2 answers
  • Can objects in a system have momentum while the momentum of the system is zero? explain your answer.
    12·1 answer
  • SOMEONE PLEASE HELP ME ASAP PLEASE!!!!!​
    14·2 answers
  • Arm abcd is pinned at b and undergoes reciprocating motion such that θ=(0.3 sin 4t) rad, where t is measured in seconds and the
    15·1 answer
  • 7. Kepler’s Third Law of Orbital Motion states that you can approximate the period P (in Earth years) it takes a planet to compl
    14·2 answers
  • A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that th
    6·1 answer
  • Which type of fault occurs when rock is subjected to this type of stress
    10·1 answer
  • What is the atmospheric pressure and temperature at sea level in a standard<br> atmosphere?
    9·1 answer
  • What is the smallest particle in the Universe?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!