Answer:
Explanation:
Given that,
Force is downward I.e negative y-axis
F = -2 × 10^-14 •j N
Magnetic field is westward, +x direction
B = 8.3 × 10^-2 •i T
Charge of an electron
q = 1.6 × 10^-19C
Velocity and it direction?
Force in a magnetic field is given as
F = q(V×B)
Angle between V and B is 270, check attachment
The cross product of velocity and magnetic field
F =qVB•Sin270
2 × 10^-14 = 1.6 × 10^-19 × V × 8.3 × 10^-2
Then,
v = 2 × 10^-14 / (1.6 × 10^-19 × 8.3 × 10^-2)
v = 1.51 × 10^6 m/s
Direction of the force
Let x be the direction of v
-F•j = v•x × B•i
From cross product
We know that
i×j = k, j×i = -k
j×k =i, k×j = -i
k×i = j, i×k = -j OR -k×i = -j
Comparing -k×i = -j to given problem
We notice that
-F•j = q ( -V•k × B×i)
So, the direction of V is negative z- direction
V = -1.51 × 10^6 •k m/s
Ultraviolet rays is the answer
Answer:
a)
, b)
, c)
, d) 
Explanation:
a) The angular velocity of the turntable after
.



b) The change in angular position is:



c) The tangential speed of a point on the rim of the turn-table:




d) The tangential and normal components of the acceleration of the turn-table:



![a_{n} = (0.365\times 10^{-3}\,m)\cdot \left[(0.421\,\frac{rev}{s} )\cdot (\frac{2\pi\,rad}{1\,rev} )\right]^{2}](https://tex.z-dn.net/?f=a_%7Bn%7D%20%3D%20%280.365%5Ctimes%2010%5E%7B-3%7D%5C%2Cm%29%5Ccdot%20%5Cleft%5B%280.421%5C%2C%5Cfrac%7Brev%7D%7Bs%7D%20%29%5Ccdot%20%28%5Cfrac%7B2%5Cpi%5C%2Crad%7D%7B1%5C%2Crev%7D%20%29%5Cright%5D%5E%7B2%7D)


The magnitude of the resultant acceleration is:


Answer:
360,000
Explanation:
This is because the density is per kilogram so you would just multiply 2400 by 150 to give you 360000.

The answer is having fewer neutrons than protons or electrons.