It is number 3 because I know it is
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s
To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

Where,
F = Force
r = Radius
Replacing we have that,



The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore


Finally, angular acceleration is a result of the expression of torque by inertia, therefore



PART B)
The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians
, therefore



Answer:
The ratio of T2 to T1 is 1.0
Explanation:
The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.
Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.
Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively
P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively
M = mass of the Sun
m = mass of the spheres, equal masses.
For the first sphere that is distance R from the sun.
F₁ = (GmM/R²)
P₁ = (k/R²)
T₁ = (F₁/P₁) = (GmM/k)
For the second sphere that is at a distance 2R from the sun
F₂ = [GmM/(2R)²] = (GmM/4R²)
P₂ = [k/(2R)²] = (k/4R²)
T₂ = (F₂/P₂) = (GmM/k)
(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0
Hope this Helps!!!
Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa