1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
2 years ago
12

Which country features the largest scale model of the solar system?.

Physics
2 answers:
matrenka [14]2 years ago
8 0

The Sweden

___________

Vinvika [58]2 years ago
5 0
The Sweden Solar System is the world's largest permanent scale model of the Solar System. The Sun is represented by the Avicii Arena in Stockholm, the largest hemispherical building in the world.
You might be interested in
A horizontal 826 N merry-go-round of radius 1.17 m is started from rest by a constant horizontal force of 57.8 N applied tangent
Julli [10]

Answer:

The kinetic energy of the merry-go-round is \bf{475.47~J}.

Explanation:

Given:

Weight of the merry-go-round, W_{g} = 826~N

Radius of the merry-go-round, r = 1.17~m

the force on the merry-go-round, F = 57.8~N

Acceleration due to gravity, g= 9.8~m.s^{-2}

Time given, t=3.47~s

Mass of the merry-go-round is given by

m &=& \dfrac{W_{g}}{g}\\~~~~&=& \dfrac{826~N}{9.8~m.s^{-2}}\\~~~~&=& 84.29~Kg

Moment of inertial of the merry-go-round is given by

I &=& \dfrac{1}{2}mr^{2}\\~~~&=& \dfrac{1}{2}(84.29~Kg)(1.17~m)^{2}\\~~~&=& 57.69~Kg.m^{2}

Torque on the merry-go-round is given by

\tau &=& F.r\\~~~&=& (57.8~N)(1.17~m)\\~~~&=& 67.63~N.m

The angular acceleration is given by

\alpha &=& \dfrac{\tau}{I}\\~~~&=& \dfrac{67.63~N.m}{57.69~Kg.m^{2}}\\~~~&=& 1.17~rad.s^{-2}

The angular velocity is given by

\omega &=& \alpha.t\\~~~&=& (1.17~rad.s^{-2})(3.47~s)\\~~~&=& 4.06~rad.s^{-1}

The kinetic energy of the merry-go-round is given by

E &=& \dfrac{1}{2}I\omega^{2}\\~~~&=&\dfrac{1}{2}(57.69~Kg.m^{2})(4.06~rad.s^{-1})^{2}\\~~~&=& 475.47~J

5 0
3 years ago
30 points!
vlada-n [284]

Answer:

Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc)  items 3 and 4 are eliminated.

Again item 2 refers to bonds between atoms and is eliminated.

This leaves only item 1.

Nuclear forces are very short range forces between components of the nucleus.

Weak nuclear forces are trillions of times smaller than strong forces.

Gravitational forces are much much smaller than the weak nuclear force.

6 0
3 years ago
An unbalanced force gives a 2.00 kg mass an acceleration of 5.00 m/s? What is the force applied to the object?​
valentinak56 [21]

Answer:

10N

Explanation:

Equation: ΣF = ma

Fapp = ma

Fapp = (2kg)(5m/s^2)    (im guessing you mean 5.00 m/s^2 not m/s)

Fapp = 10*kg*m/s^2

Fapp = 10N

5 0
2 years ago
Your cousin Jannik skis down a blue square ski slope, with an initial speed of 3.6 m/s. He travels 15 m down the mountain side b
fenix001 [56]

Answer: The loss of energy due to friction is equal to 1,253 J.

Explanation:

The problem tells us that the skier has an initial speed of 3.6 m/s, which means that his initial kinetic energy is as follows:

K₁ = 1/2 m v₁² = 1/2 . 58.0 Kg. (3.6)² (m/s)² =  376 J

After coming to a  flat landing, his final speed is 7.8 m/s, so the final kinetic energy is as follows:

K₂ = 1/2 m v₂² = 1/2. 58.0 Kg. (7.8)² (m/s)² = 1,764 J

Now, when skying down the slope the increase in kinetic energy only can come from another type of energy, in this case, gravitational potential energy.

If we take the ground flat level as a Zero reference, the initial gravitational potential energy, can be written as follows, by definition:

U₁ = m.g. h (1)

Now, we don't know the value of the height h, but we know that the incline has a 18º angle above the horizontal, and that the distance travelled along the incline is 15 m.

By definition, the sinus of an angle, is equal to the proportion between the height and the hypotenuse , so we can write the following equation:

sin 18º = h / 15 m ⇒ h = 15 m. sin 18º = 4.6 m

Replacing in (1), we get:

U₁ = 58.0 Kg. 9.8 m/s². 4.6 m = 2,641 J

So, we can get the total initial mechanical energy, as follows:

E₁ = K₁ + U₁ = 376 J + 2,641 J = 3,017 J

After arriving to the flat zone, all potential energy has become in kinetic energy, even though not completely, due to the effect of friction.

This remaining kinetic energy can be written as follows:

E₂ = K₂ = 1,764 J

The difference E₂-E₁, is the loss of energy due to friction forces acting during the travel along the 15 m path, and is as follows:

ΔE= E₂ - E₁ = 1,764 J - 3,017 J = -1,253 J

8 0
3 years ago
If you had only one match, and entered a dark room containing an oil lamp, some newspaper, and some kindling wood, which would y
alukav5142 [94]
The match
you need to light the match before you can light anything else.

and after the match is lit, maybe light the oil lamp first

7 0
3 years ago
Read 2 more answers
Other questions:
  • Is the force of gravity stronger on a piece of crumpled paper or a normal piece of flat paper?
    8·1 answer
  • Which of the following changes would decrease the coefficient of friction needed for this ride?
    10·1 answer
  • A large rock is weathered into tiny pieces which add up the weight of the original rock this demonstrates the conversion of ____
    6·1 answer
  • Force equals blank times acceleration
    12·2 answers
  • [3 points] Question: Consider a pendulum made from a uniform, solid rod of mass M and length L attached to a hoop of mass M and
    8·2 answers
  • A student uses an indicator to measure the pH of a solution. The indicator shows a pH of 7. What must be true of this solution?
    13·2 answers
  • If you are driving 128.4 km/h along a straight road and you look down for 3.0s, how far do you travel during this inattentive pe
    7·1 answer
  • Which statements describe a physical property of matter? Check all that apply.
    12·1 answer
  • Answer the questions to help you understand your parachute and forces experiment. Use the data table below to record your data.
    12·1 answer
  • At t = 0 the switch S is closed with the capacitor uncharged. If C = 50 F,  = 20 V, and R = 4.0 k, what is the charge on the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!