Hello there.
<span>What creates the van allen belts
</span>
<span>b. deflection of charged particles
</span>
Answer: Use Mixture Melting Point
Explanation:
A procedure called mixture melting point would be used to determine whether or not the suspected compound is identical to the unknown.
The two suspected compounds would need to be used to create a new mixture and determine the mixtures melting point. Compare this melting points with that of the unknown compound in order to determine which one of these two suspected compounds is identical to the unknown compound.
Answer:
∴ΔH₂ = - 12,258 KJ
Explanation:
Enthalpy:
Enthalpy is a property of a thermodynamic system. Enthalpy of a system is equal to the sum of internal energy of the system and presser times volume of the system.
The heat absorbes or releases in a closed system is the change of enthalpy of the system.
Given reactions are:
Reaction 1: C₃H₈(g)+5O₂(g)→ 3CO₂(g)+4H₂O, ΔH₁= - 2043 KJ
Reaction 2: 6C₃H₈(g)+30 O₂(g)→ 18 CO₂(g)+24 H₂O, ΔH₂=?
Take a look at reaction 1 and reaction 2, the only difference is that 1 molecule of C₃H₈ is combusted in reaction 1 and 6 molecules of C₃H₈ is combusted in reaction 2.
We can think the reaction 2 as occurring 6 different container and each containers contains 1 molecule of C₃H₈. The enthalpy is an extensive property. Total enthapy of the 6 containers is = 6×(-2043 KJ)
= - 12,258 KJ
∴ΔH₂ = - 12,258 KJ
Answer:
![PV_{m} = RT[1 + (b-\frac{a}{RT})\frac{1}{V_{m} } + \frac{b^{2} }{V^{2} _{m} } + ...]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B1%20%2B%20%28b-%5Cfrac%7Ba%7D%7BRT%7D%29%5Cfrac%7B1%7D%7BV_%7Bm%7D%20%7D%20%2B%20%5Cfrac%7Bb%5E%7B2%7D%20%7D%7BV%5E%7B2%7D%20_%7Bm%7D%20%7D%20%2B%20...%5D)
B = b -a/RT
C = b^2
a = 1.263 atm*L^2/mol^2
b = 0.03464 L/mol
Explanation:
In the given question, we need to express the van der Waals equation of state as a virial expansion in powers of 1/Vm and obtain expressions for B and C in terms of the parameters a and b. Therefore:
Using the van deer Waals equation of state:

With further simplification, we have:
![P = RT[\frac{1}{V_{m}-b } - \frac{a}{RTV_{m} ^{2} }]](https://tex.z-dn.net/?f=P%20%3D%20RT%5B%5Cfrac%7B1%7D%7BV_%7Bm%7D-b%20%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%5E%7B2%7D%20%7D%5D)
Then, we have:
![P = \frac{RT}{V_{m} } [\frac{1}{1-\frac{b}{V_{m} } } - \frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=P%20%3D%20%5Cfrac%7BRT%7D%7BV_%7Bm%7D%20%7D%20%5B%5Cfrac%7B1%7D%7B1-%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%20%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Therefore,
![PV_{m} = RT[(1-\frac{b}{V_{m} }) ^{-1} - \frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B%281-%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%29%20%5E%7B-1%7D%20-%20%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Using the expansion:

Therefore,
![PV_{m} = RT[1+\frac{b}{V_{m} }+\frac{b^{2} }{V_{m} ^{2} } + ... -\frac{a}{RTV_{m} }]](https://tex.z-dn.net/?f=PV_%7Bm%7D%20%3D%20RT%5B1%2B%5Cfrac%7Bb%7D%7BV_%7Bm%7D%20%7D%2B%5Cfrac%7Bb%5E%7B2%7D%20%7D%7BV_%7Bm%7D%20%5E%7B2%7D%20%7D%20%2B%20...%20-%5Cfrac%7Ba%7D%7BRTV_%7Bm%7D%20%7D%5D)
Thus:
equation (1)
Using the virial equation of state:
![P = RT[\frac{1}{V_{m} }+ \frac{B}{V_{m} ^{2}}+\frac{C}{V_{m} ^{3} }+ ...]](https://tex.z-dn.net/?f=P%20%3D%20RT%5B%5Cfrac%7B1%7D%7BV_%7Bm%7D%20%7D%2B%20%5Cfrac%7BB%7D%7BV_%7Bm%7D%20%5E%7B2%7D%7D%2B%5Cfrac%7BC%7D%7BV_%7Bm%7D%20%5E%7B3%7D%20%7D%2B%20...%5D)
Thus:
equation (2)
Comparing equations (1) and (2), we have:
B = b -a/RT
C = b^2
Using the measurements on argon gave B = −21.7 cm3 mol−1 and C = 1200 cm6 mol−2 for the virial coefficients at 273 K.
[/tex] = 0.03464 L/mol
a = (b-B)*RT = (34.64+21.7)*(1L/1000cm^3)*(0.0821)*(273) = 1.263 atm*L^2/mol^2
There are 32 valence electrons for the Lewis structure for ClO4