Answer:
The answer to your question is 3 moles of AlCl₃
Explanation:
Process
1.- Write and balance the equation
Al(NO₃)₃ + 3NaCl ⇒ 3NaNO₃ + AlCl₃
2.- Determine the limiting reactant
Theoretical proportion 1 mol Al(NO₃)₃ : 3 moles of NaCl
Experimental proportion 4 moles Al(NO₃)₃ : 9 moles NaCl
From these values, we determine that the limiting reactant is NaCl because the number of moles increases three times and the number of moles of Al(NO₃)₃ increases four times.
3.- Determine the amount of AlCl₃ using proportions
3 moles of NaCl --------------- 1 mol of AlCl₃
9 moles of NaCl ---------------- x
x = (9 x 1) / 3
x = 9 /3
x = 3 moles
Don't really know if this is what your asking but P1/T1= P2/T2 should show how the pressure varies with temperature (V is left out because it's constant since the gas is trapped in an aerosol can). As the temperature rises the pressure rises and if it gets too high then the can explodes, which is why it should be stored in a cool place. There's also PV=nRT might be kind of hard to find moles (n) though.
Answer:
YES YES YES YES YES YES YES YES YES YES YES YES
Density (d) which is the quotient when mass (m) is divided by volume (v) is usually reported in terms of g/mL.
d = m /v
Substituting the known values,
d = (1.62 kg) x (1000 g/ 1 kg) / (205 mL)
The answer would be approximately equal to 7.9 g/mL.