Answer:
Se the explanation below
Explanation:
We do not feel these forces of these bodies, because they are very small compared to the force of Earth's attraction. Although its mass is greater than that of a human being, its mass is not compared to the Earth's mass. In order to understand this problem we will use numerical data and the universal gravitation formula, to give validity to the explanation.
<u>Force exerted by the Earth on a human being</u>
<u />

Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 5.97*10^24[kg]
r = distance from the center of the earth to the surface or earth radius = 6371 *10^3 [m]
<u />
Now replacing we have
![F = 6.673*10^{-11} *\frac{80*5.97*10^{24}}{(6371*10^{3})^{2} } \\F = 785[N]](https://tex.z-dn.net/?f=F%20%3D%206.673%2A10%5E%7B-11%7D%20%2A%5Cfrac%7B80%2A5.97%2A10%5E%7B24%7D%7D%7B%286371%2A10%5E%7B3%7D%29%5E%7B2%7D%20%20%7D%20%5C%5CF%20%3D%20785%5BN%5D)
<u>Force exerted by a building on a human being</u>
<u />
Where:
G = universal gravitation constant = 6.673*10^-11 [N*m^2/kg^2]
m1 = mass of the person = 80 [kg]
m2 = mass of the earth 300000 [ton] = 300 *10^6[kg]
r = distance from the building to the person = 2[m]
![F = 6.673*10^{-11}*\frac{80*300*10^6}{2^{2} } \\F= 0.4 [N]](https://tex.z-dn.net/?f=F%20%3D%206.673%2A10%5E%7B-11%7D%2A%5Cfrac%7B80%2A300%2A10%5E6%7D%7B2%5E%7B2%7D%20%7D%20%20%5C%5CF%3D%200.4%20%5BN%5D)
As we can see the force exerted by the Earth is 2000 times greater than that exerted by a building with the proposed data.
False it refers to frequency
Answer:
Both A and B
Explanation:
The interaction of magnetic fields and armature results into a rotational force of the armature hence turning motion. It's important to note that you will always need two magnetic fields in order to experience the force since one magnetic field is at the rotating armature and another at the casing. Considering the arguments of these two technicians, both of them are correct in their arguments.
If you have no way to accurately measure all of the object's bumps and dimples, then the only way to measure its volume is by means of fluid displacement.
-- Put some water into a graduated (marked) container, read the amount of water, drop the object into the container, and read the new volume in the container. The volume of the object is the difference between the two readings.
-- Alternatively, stand an unmarked container in a large pan, and fill it to the brim. Slowly slowly lower the object into the unmarked container, while the pan catches the water that overflows from it. When the object is completely down in the container, carefully remove the container from the pan, and measure the volume of the water in the pan. It's equal to the volume of the object.
Answer:
gravitational field strength (g) is measured in newtons per kilogram (N/kg)