1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delicious77 [7]
3 years ago
5

Do the same molecules have to be present on both sides of a chemical equation? why or why not?

Physics
1 answer:
Nadusha1986 [10]3 years ago
7 0
Yes, the same molecules have to be present on both sides of a chemical equation. This is because the equation has to be able to be balanced, and without the same amount of each molecule on each side of the equation, it could not be balanced.
You might be interested in
In three sentences, please describe SIMPLE HARMONIC motion, and give two examples. Thank you! :-)
11Alexandr11 [23.1K]
A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
3 0
3 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
2 years ago
Visible electrical discharge from a storm cloud is called?
SOVA2 [1]

id have to say its thunder

7 0
2 years ago
A person suffering from anaemia gets tired​
avanturin [10]

Answer: yes.

Explanation:

4 0
3 years ago
Read 2 more answers
an object of mass 20kg is lifted to a 25m building. how much potential energy is stored on a mass?(take g=10m/s²)​
Goshia [24]

Answer:

The answer is 5000 Joules

4 0
2 years ago
Other questions:
  • an object 8.25 cm from a lens creates a virtual image of magnification 2.40 what is the focal length of the lens (mind your minu
    13·1 answer
  • Who delivers the classroom and hands-on training you need to become a CERT volunteer? A. A team of first responders and other qu
    8·1 answer
  • A circuit consists of a 9.0 mH inductor coil, a 230 Ω resistor, a 12.0 V ideal battery, and an open switch-all connected in seri
    11·1 answer
  • Why is it incorrect to say heavy objects sink in water?
    11·1 answer
  • A peg is located a distance h directly below the point of attachment of the cord. If h = 0.760 L, what will be the speed of the
    7·1 answer
  • 9. A current of 9 A flows through an electric device with a resistance of 43 Ω. What must be the applied voltage in this particu
    11·1 answer
  • Refer to Activity 1: Describe the difference between the rate of diffusion seen for urea and albumin
    12·1 answer
  • What can you conclude about the total mechanical energy of a pendulum as it swings back and forth?
    10·1 answer
  • What is the relationship between an object’s temperature and its heat?
    9·1 answer
  • Explain why it is not advisable for soldiers to march across the bridge in rythm​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!