Answer:
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
Explanation:
Given that
Yield strength ,Sy= 240 MPa
Tensile strength = 310 MPa
Elastic modulus ,E= 110 GPa
L=380 mm
ΔL = 1.9 mm
Lets find strain:
Case 1 :
Strain due to elongation (testing)
ε = ΔL/L
ε = 1.9/380
ε = 0.005
Case 2 :
Strain due to yielding
![\varepsilon' =\dfrac{S_y}{E}](https://tex.z-dn.net/?f=%5Cvarepsilon%27%20%3D%5Cdfrac%7BS_y%7D%7BE%7D)
![\varepsilon' =\dfrac{240}{110\times 1000}](https://tex.z-dn.net/?f=%5Cvarepsilon%27%20%3D%5Cdfrac%7B240%7D%7B110%5Ctimes%201000%7D)
ε '=0.0021
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
For computation of load strain due to testing should be less than the strain due to yielding.
Center.........................
Answer:
toward the normal
Explanation:
Light travels at different speed in different mediums.
Refractive index is equal to velocity of the light 'c' in empty space divided by the velocity 'v' in the substance.
Or ,
n = c/v.
Light travels at a slower speed in water as compared to air because there are more number of interfering molecules in the path of the light in case of water as compared to liquid.
When a light travels from lower denser medium say water to higher denser medium say water, it bends towards the perpendicular (normal) as its speed reduces in that medium.
Wave speed = (wavelength) x (frequency)
Wavelength = (wave speed) / (frequency)
Wavelength = (9 m/s) / (0.5 Hz)
<em>Wavelength = 18 m</em>
<u> Ohms law: </u> This law relates voltage difference between two points. Mathematically, the law states that V=IR;
Where
V = voltage difference ; in volts
I = Current ; in Amperes
R = Resistance ; in ohms
<u>1. Answer : </u> given that R = 10 ; V= 12 V ; I = ?
From ohms law, I = V/R
= 12/10
= 1.2 Amp.
<u>2. Answer:</u> given that R = 10 ; V= ? ; I = 5
From ohms law, V = IR
= 10×5 = 50 V
<u>3 . Answer:</u> given that R = ? ; V= 120 ; I = 5
From ohms law, R = V/I
= 120/5
= 24 Ω
<u>4 . Answer:</u> given that R = ? ; V= 10 ; I = 20
From ohms law, R = V/I
= 10/20
= 0.5 Ω
<u>5 . Answer:</u> given that R = 480 ; V= 24 ; I = ?
From ohms law, I = V/R
= 24/480
= 0.05 A
<u>6. Answer:</u> given that R = 150 ; V= ? ; I = 1
From ohms law, V = IR
= 1 × 150
= 150 V