1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
2 years ago
9

Parker wound a wire around a large iron nail. He then created an electromagnet by connecting the ends of the wire to different b

atteries. The table shows the current he measured for each electromagnet.
Which conclusion is best supported by the data?

A) Electromagnet W is the strongest.
B) Electromagnet X is weaker than electromagnet Z.
C) Electromagnet Y is the strongest.
D) Electromagnet Y is weaker than electromagnet X.

Physics
2 answers:
torisob [31]2 years ago
8 0
Hey Ya'll its C im am correct yeah me
padilas [110]2 years ago
3 0
The correct option is C.
From the information given above, one can easily conclude that electromagnetic Y is the strongest because, it produces the higher amount of current compare to the other electromagnets. Electromagnet W is the weakest because it produces the lowest amount of current. 
You might be interested in
You can carry a 50 N weight up a flight of stairs that is 3 m high in 10 s. Then you carry 40 N up two flights of stairs in 20 s
d1i1m1o1n [39]
You can do 50 and 10 and carry the 30 and it would be in the same power so you’ll have the same energy
5 0
2 years ago
PLEASEEE HELP ME WITH THIS ALSO. I DONT WANT TO FAIL. You push a merry-go-round on which Kim and Katie are riding. Kim weighs 45
Serjik [45]

Answer:

The body weight

Explanation:

5 0
3 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
A block of ice of mass 4.30 kg is placed against a horizontal spring that has a force constant k = 250 N/m and is compressed a d
OleMash [197]

Answer:

W = 0.060 J

v_2 = 0.18 m/s

Explanation:

solution:

for the spring:

W = 1/2*k*x_1^2 - 1/2*k*x_2^2

x_1 = -0.025 m and x_2 = 0

W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2

W = 0.060 J

the work-energy theorem,

W_tot = K_2 - K_1 = ΔK

with K = 1/2*m*v^2

v_2 = √2*W/m

v_2 = 0.18 m/s

8 0
3 years ago
What is Tension variables?
Soloha48 [4]

Answer:

The tension on an object is equal to the mass of the object x gravitational force plus/minus the mass x acceleration. T = mg + ma.

Explanation:

6 0
2 years ago
Other questions:
  • When waves travel through water, why do the moving water particles continue to return to their starting position?
    13·1 answer
  • How is force, work, and distance the related
    9·1 answer
  • Air resistance is a special kind of frictional force that acts on objects as they travel through air. Identify the situation whe
    6·1 answer
  • In a physics laboratory experiment, a coil with 200 turns enclosing an area of 13.1 cm2 is rotated during the time interval 3.10
    10·1 answer
  • Ciara is swinging a 0.015 kg ball tied to a string around her head in a flat, horizontal circle. The radius of the circle is 0.7
    7·2 answers
  • A vertical scale on a spring balance reads from 0 to 200 \rm{N}. The scale has a length of 10.0 \rm{cm} from the 0 to 200 \rm{N}
    10·1 answer
  • The smallest unit of an element that has all of the properties of the element is a/an
    6·2 answers
  • Is true that the earth's crust is made up of many tectonic plates?
    5·1 answer
  • According to the Law of Reflection, a light ray strikes a mirror ________________________________.
    15·1 answer
  • A roller coaster is released from the top of a track that is 125 m high. Find the rollar coaster speed when it reaches ground le
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!