D. 128.25 because force=mass x acceleration
In the field of electromagnetism, when two charged plates that are situated opposite to each other by a certain distance, it forms an energy called the electric field. This energy is due to the difference in potential energy with respect to distance. Thus,
E = V/d
However, the voltage in volts is energy per coulomb. Thus,
V = (8x10-17 J/electron)*(1electron/1.60218x10^-19 C)
V = 499.32 volts
Therefore,
E = 499.32 volts /2.5 m
E = 199.73 N/C
The electric field that caused the change in potential energy is equal to 199.73 Newtons per Coulomb.
After looking at the transverse waves in the diagram you listed above, the one diagram that does represent the direction of particle X at the instant show in diagram number 3. The direction of the wave motion is up. The correct answer choice will be 3.
Answer:
λ = 5940 Angstroms
Explanation:
This is an exercise of the relativistic Doppler effect
f’= f √((1- v / c) / (1 + v / c))
Where the speed in between the strr and the observer is positive if they move away
Let's use the relationship
c = λ f
f = c /λ
We replace
c /λ’ = c /λ √ ((1- v / c) / (1 + v / c))
λ = λ’ √ ((1- v / c) / (1 + v / c))
Let's calculate
v = 0.01 c
v = 0.01 3 10⁸
v= 3 10⁶ m / s
λ = 6000 √ [(1- 3 10⁶/3 10⁸) / (1+ 3 10⁶/3 10⁸)]
λ = 6000 √ [0.99 / 1.01]
λ = 5940 Angstroms
Potential energy is the store she energy from an object this could include rubber bands. Kinetic energy is the energy that deals with motion a good example is a person running