1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wlad13 [49]
3 years ago
7

A particle initially located at the origin has an acceleration of = 2.00ĵ m/s2 and an initial velocity of i = 8.00î m/s. Find (a

) the vector position of the particle at any time t (where t is measured in seconds), (b) the velocity of the particle at any time t, (c) the position of the particle at t = 7.00 s, and (d) the speed of the particle at t = 7.00
Physics
1 answer:
sergejj [24]3 years ago
4 0

a. The particle has position vector

\vec r(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)t\right)\,\vec\imath+\left(\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\right)\,\vec\jmath

\vec r(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\vec\imath+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\vec\jmath

b. Its velocity vector is equal to the derivative of its position vector:

\vec v(t)=\vec r'(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\vec\imath+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\vec\jmath

c. At t=7.00\,\mathrm s, the particle has position

\vec r(7.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(7.00\,\mathrm s)\,\vec\imath+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(7.00\,\mathrm s)^2\,\vec\jmath

\vec r(7.00\,\mathrm s)=\left(56.0\,\vec\imath+49.0\,\vec\jmath\right)\,\mathrm m

That is, it's 56.0 m to the right and 49.0 m up relative to the origin, a total distance of \|\vec r(7.00\,\mathrm s)\|=\sqrt{(56.0\,\mathrm m)^2+(49.0\,\mathrm m)^2}=74.4\,\mathrm m away from the origin in a direction of \theta=\tan^{-1}\dfrac{49.0\,\mathrm m}{56.0\,\mathrm m}=41.2^\circ relative to the positive x axis.

d. The speed of the particle at t=7.00\,\mathrm s is the magnitude of the velocity at this time:

\vec v(7.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\vec\imath+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(7.00\,\mathrm s)\,\vec\jmath

\vec v(7.00\,\mathrm s)=\left(8.00\,\vec\imath+14.0\,\vec\jmath\right)\dfrac{\rm m}{\rm s}

Then its speed at this time is

\|\vec v(7.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+(14.0\dfrac{\rm m}{\rm s}\right)^2}=16.1\dfrac{\rm m}{\rm s}

You might be interested in
Two fixed charges, q1 = +1.07µC and q2 = -3.28µC, are 61.8cm apart. Where may a third charge be located so that no net force act
egoroff_w [7]

Answer:

12...lollll

Explanation:

.

3 0
3 years ago
Read 2 more answers
For thermal equilibrium at temperature Tan appropriate measure of energy is kT where k is Boltzmann's constant. Convert the foll
Schach [20]

Answer:

1 cm⁻¹ =1.44K  1 ev = 1.16 10⁴ K

Explanation:

The relationship between temperature and thermal energy is

     E = K T

The relationship of the speed of light

    c =λ f = f / ν          1/λ= ν

The Planck equation is

          E = h f

Let's start the transformations

     c = f λ = f / ν        

     f = c ν

     E = h f

     E = h c ν

     E = KT

     h c ν = K T

     T = h c ν  / K =( h c / K) ν

Let's replace the constants

     h = 6.63 10⁻³⁴ J s

     c = 3 10⁸ m / s

     K = 1.38  10⁻²³ J / K

 

     v = 1 cm-1 (100 cm / 1 m) = 10² m-1

   

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²

     A = h c / K = 1,441 10⁻²

     T =  1.44K

     ν = 103 cm⁻¹ = 103 10² m

     T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²

     T = 148K

1 Rydberg = 1.097 10 7 m

As we saw at the beginning the λ=1 / v

     T = (h c / K) 1 /λ

     T = 1,441 10⁻²  1 / 1,097 10⁷

     T = 1.3 10⁻⁹ K

    E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J

    E = KT

    T = E/K

    T = 1.6 10⁻¹⁹ /1.38 10⁻²³

    T = 1.16 10⁴ K

3 0
4 years ago
Calculated the measurement uncertainty for Kinetic Energy when :mass = 1.3[kg] +/- 0.4[kg]velocity= 5.2 [m/s] +/- 0.2 [m/s]KE= 1
andriy [413]

Answer:

\rm KE\pm \Delta KE = 17.6\pm 6.8\ J.

Explanation:

<u>Given:</u>

  • Mass, \rm m\pm\Delta m = 1.3\pm 0.4\ kg.
  • Velocity, \rm v\pm \Delta v = 5.2\pm 0.2\ m/s.

where,

\rm \Delta m,\ \Delta v are the uncertainties in mass and velocity respectively.

The kinetic energy is given by

\rm KE = \dfrac 12 mv^2 = \dfrac 12 \times 1.3\times 5.2^2=17.576\approx 17.6\ J.

The uncertainty in kinetic energy is given as:

\rm \dfrac{\Delta KE}{KE}=\dfrac{\Delta m}{m}+\dfrac{2\Delta v}{v}\\\dfrac{\Delta KE}{17.6}=\dfrac{0.4}{1.3}+\dfrac{2\times 0.2}{5.2}\\\dfrac{\Delta KE}{17.6}=0.384\\\Rightarrow \Delta KE = 17.6\times 0.384 = 6.7854\ J\approx6.8\ J\\\\Thus,\\\\KE\pm \Delta KE = 17.6\pm 6.8\ J.

7 0
3 years ago
When a wave is acted upon by an external damping force, what happens to the energy of the wave
Rasek [7]
The energy of the wave decreases gradually
8 0
3 years ago
Read 2 more answers
The wave length of violet light rounded to the nearest nanometer is a __ nm
nataly862011 [7]
Wavelength= speed / frequency 

so.....3× 10^8 / 7.26×10^14
= .413× 10^(-6)

in scientific notation= 4.13×10^(-7) 

in nanometer = 413 nm
6 0
3 years ago
Other questions:
  • What is good deductive reasoning called
    11·1 answer
  • Does aluminum foil refract light? Why?
    14·1 answer
  • Can the reaction distance be a negitive?
    8·1 answer
  • At what angle should an object be thrown so that the maximum range is equal to three times the height reached by the projectile?
    7·1 answer
  • An electric motor is used to operate a Carnot refrigerator with an interior temperature of 0.00 ◦C. Liquid water at 0.00 ◦C is p
    10·1 answer
  • What is the acceleration of a 10kg mass pushed by a 5N force?​
    10·1 answer
  • Two point charges, initially 3 cm apart, are moved to a distance of 1 cm apart. By what factor does the resulting electric force
    6·1 answer
  • How much work is done when an engine generates 400 Watts of power in 25 seconds?
    5·2 answers
  • Define critical angle<br>​
    12·1 answer
  • An ocean liner leaves New York City and travels 18.0o north of east for 155 km. How far east and how far north has it gone? In o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!