Answer:
(a) 7.315 x 10^(-14) N
(b) - 7.315 x 10^(-14) N
Explanation:
As you referred at the final remark, the electron and proton undergo a magnetic force of same magnitude but opposite direction. Using the definition of magnetic force, a cross product must be done. One technique is either calculate the magnitude of the velocity and magnetic field and multiplying by sin (90°), but it is necessary to assure both vectors are perpendicular between each other ( which is not the case) or do directly the cross product dealing with a determinant (which is the most convenient approach), thus,
(a) The electron has a velocity defined as: ![\overrightarrow{v}=(2.4x10^{6} i + 3.6x10^{6} j) \frac{[m]}{[s]}\\\\](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%282.4x10%5E%7B6%7D%20i%20%2B%203.6x10%5E%7B6%7D%20j%29%20%5Cfrac%7B%5Bm%5D%7D%7B%5Bs%5D%7D%5C%5C%5C%5C)
In respect to the magnetic field; ![\overrightarrow{B}=(0.027 i - 0.15 j) [T]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BB%7D%3D%280.027%20i%20-%200.15%20j%29%20%5BT%5D)
The magnetic force can be written as;
![\overrightarrow{F} = q(\overrightarrow{v} x \overrightarrow{B})\\ \\\\\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%20%3D%20q%28%5Coverrightarrow%7Bv%7D%20x%20%5Coverrightarrow%7BB%7D%29%5C%5C%20%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D)
Bear in mind
thus,
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= -1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20-1.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%287.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%287.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
(b) Considering the proton charge has the same magnitude as electron does, but the sign is positive, thus
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= 1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(-7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (-7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=-7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%201.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%28-7.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%28-7.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D-7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
Final remarks: The cross product was performed in R3 due to the geometrical conditions of the problem.
Answer:
1. Soil vapor extraction - 3
2. Air sparging - 1
3. bioventing - 4
4. Natural attenuation -2
Explanation:
Soil vapor extraction - Soil vapor extraction (SVE) is the method in which perforated pipes are used into the soil and air is injected through the pipes. Contamination in soil then removed through perforation in pipes and disposed into an off-gas treatment unit.
Air sparging - In air sparging process air is injected in bubble form that remediates groundwater by volatilizing contaminants and enhancing biodegradation.
Bioventing - In bioinventing process low air flow rates are used that provide enough oxygen to sustain microbial activity in the soil and remove other contamination form the soil.
Natural attenuation - Natural attenuation is a natural process of environmental remediation which reduce the toxicity, mass, or concentration of contaminants in soil without human intervention.
Answer:
I think the answer is C.
Explanation:
A primary source is a first hand account of an event while a secondary source is a retelling or second hand account meaning as many details will be prevalent.