Answer:
Br- Withdraws electrons inductively
Donates electrons by resonance
CH2CH3 - Donates electrons by hyperconjugation
NHCH3- Withdraws electrons inductively
Donates electrons by resonance
OCH3 - Withdraws electrons inductively
Donates electrons by resonance
+N(CH3)3 - Withdraws electrons inductively
Explanation:
A chemical moiety may withdraw or donate electrons by resonance or inductive effect.
Halogens are electronegative elements hence they withdraw electrons by inductive effect. However, they also contain lone pairs so the can donate electrons by resonance.
Alkyl groups donate electrons by hyperconjugation involving hydrogen atoms.
-NHCH3 and contain species that have lone pair of electrons which can be donated by resonance. Also, the nitrogen and oxygen atoms are very electron withdrawing making the carbon atom to have a -I inductive effect.
+N(CH3)3 have no lone pair and is strongly electron withdrawing by inductive effects.
It is when two or more different substances which are mixed
Answer:
8.00 moles.
Explanation:
The ratio of Fe to FeO is 2:2 = 1:1, so 8 moles are produced.
There are some exceptions to the rule organisms such as a protist called a euglena can be both heterotrophic and autotrophic. This is a true statement.
Explanation:
- Euglena is a large genus of unicellular protists: they have both plant and animal characteristics
- Photoautotrophs include protists that have chloroplasts, such as Spirogyra. Heterotrophs get their energy by consuming other organisms. Other protists can get their energy both from photosynthesis and from external energy sources
- All live in water and move by means of a flag ellum. This is an animal characteristic. Most have chloroplasts, which are characteristic of algae and plants
- Euglena is photosynthetic in the presence of sunlight i.e autotrophic, when deprived of sunlight they behave like heterotrophs by predating on other smaller organisms.
- Most species of Euglena have photosynthesizing chloroplasts within the body of the cell, which enable them to feed by autotrophy, like plants. They can also take nourishment heterotrophically, like animals.
Answer:
See explanation
Explanation:
The reaction equation is;
C3H8 (g) + 5O2(g) -------> 4H2O(g) + 3CO2(g)
From the formula;
Total enthalpy of reactants = (ΔHf of Reactant 1 x Coefficient) + (ΔHf of Reactant 2 x Coefficient)
Total enthalpy of products= (ΔHf of Product 1 x Coefficient) + (ΔHf of Product 2 x Coefficient)
Hence;
Total enthalpy of reactants =[(-103.85 * 1) + (0 * 5)] = -103.85 + 0 = -103.85 KJ/mol
Total enthalpy of products= [(-393.51 * 4) +(-241.82 * 3)] = (-1574.04) + (-483.64) = -2057.68 KJ/mol