In gamma decay, no change in proton number occurs, so the atom does not become a different element
This is a physical phase change it is still water it just separated and became less and less.it stays water though
Answer:
FALSE
Explanation:
Assuming that the gas is ideal
Therefore the gas obeys the ideal gas equation
<h3>Ideal gas equation is </h3><h3>P × V = n × R × T</h3>
where
P is the pressure exerted by the gas
V is the volume occupied by the gas
n is the number of moles of the gas
R is the ideal gas constant
T is the temperature of the gas
Here volume of the gas will be the volume of the container
Given the volume of the container and number of moles of the gas are constant
As R will also be constant, the pressure of the gas will be directly proportional to the temperature of the gas
P ∝ T
∴ Pressure will be directly proportional to the temperature
Answer:
See explanation
Explanation:
Calcium carbide reacts with water to yield acetylene gas and calcium hydroxide as follows;
CaC2(s)+2H2O(g)⇋Ca(OH)2(s)+C2H2(g)
This now shows us that the equation as written in the question is wrong. Since the equation for the reaction of calcium carbide and water as shown in the question is wrong, the equation can not be balanced.
Answer:
24.6g of NaCl
Explanation:
Expression of the reaction:
2NaCl → 2Na + Cl₂
Given parameters:
Mass of Cl₂ = 15g
Unknown:
Mass of NaCl = ?
Solution:
To solve this problem, we have to use mole relationships.
Find the number of moles of the mass of the given specie;
Number of moles =
Molar mass of Cl₂ = 2(35.5) = 71g/mol
Number of moles =
= 0.21mole
Now;
From the balanced reaction equation;
1 mole of Cl₂ is produced from 2 moles of NaCl;
0.21 mole of Cl₂ will be produced from 0.21 x 2 = 0.42mole of NaCl
So,
Mass of NaCl = number of moles x molar mass
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Mass of NaCl = 0.42 x 58.5 = 24.6g of NaCl