1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krok68 [10]
3 years ago
13

Find the potential energy of a 50gof mass 10kg standing on a building floor of 10m above the ground level​

Physics
1 answer:
LenaWriter [7]3 years ago
4 0

solution:

here,

mass(m)=10 kg

acceleration due to gravity(g)=50

height(h)=10

we know,

potential energy(p.e)=m*g*h

                                  =10*50*10

                                   =5000

the potential energy is 5000.

You might be interested in
Suppose you hit a steel nail with a 0.500-kg hammer, initially moving at 15.0 m/s and brought to rest in 2.80 mm. How much is th
katrin [286]

Complete Question

Suppose you hit a steel nail with a 0.500-kg hammer, initially moving at 15.0 m/s and brought to rest in 2.80 mm. How much is the nail compressed if it is 2.50 mm in diameter and 6.00-cm long.What Average force is excreted on the Nail

Answer:

F=2*10^{4}N

Explanation:

From the question we are told that:

Mass m=0.500kg

Initial Velocity V=15.0m/s

Distance x=2.80mm=>0.00280m

Diameter d=2.50mm=>0.00250m

Length l=6.00cm=>0.6m

Generally the equation for Force is mathematically given by

 F=\frac{mv^2}{2d}

 F=\frac{0.500*15^2}{2.80*10^{-3}}

 F=2*10^{4}N

6 0
2 years ago
Salmon often jump waterfalls to reach their
PilotLPTM [1.2K]

The minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.

The given parameters;

  • height of the waterfall, h = 0.432 m
  • distance of the Salmon from the waterfall, s = 3.17 m
  • angle of projection of the Salmon, = 30.8º

The time of motion to fall from 0.432 m is calculated as;

h = v_0_y + \frac{1}{2} gt^2\\\\0.432 = 0 + (0.5\times 9.8)t^2\\\\0.432 = 4.9t^2\\\\t^2 = \frac{0.432}{4.9} \\\\t^2 = 0.088\\\\t = \sqrt{0.088} \\\\t = 0.3 \ s

The minimum velocity of the Salmon jumping at the given angle is calculated as;

X = v_0_x t\\\\3.17 = (v_0\times cos(30.8)) \times 0.3\\\\10.567 = v_0\times cos(30.8)\\\\v_0 = \frac{10.567}{cos(30.8)} \\\\v_0 = 12.3 \ m/s

Thus, the minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.

Learn more here: brainly.com/question/20064545

8 0
2 years ago
I need help someone help me
GaryK [48]

what do you need , i mean your help , let me see if i can help

5 0
3 years ago
Apply the impulse-momentum relation and the work-energy theorem to calculate the maximum value of t if the cake is not to end up
loris [4]
Puto chupame el semen ok? right?
8 0
3 years ago
When two hydrogen nuclei combine to form one helium nucleus, nuclear fusion has taken place. Please select the best answer from
kirill115 [55]
The answer is true
<span>Nuclear Fusion is 2 small nuclei to form one that's bigger</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • How an elastic material can no longer be elastic but plastic instead?
    6·1 answer
  • A crew team rows a boat at a rate of 20 km/h in still water. In practice on a river, the team rows for 30 minutes up the river (
    8·1 answer
  • Put the following stages of star formation into the proper sequence from earliest to latest:
    14·1 answer
  • What color is mercury
    5·2 answers
  • An ideal parallel-plate capacitor consists of a set of two parallel plates of area A separated by a very small distance d. When
    7·1 answer
  • the coefficient of static friction between a 40 kg picnic table and the ground below is .43. what is the greatest horizontal for
    14·2 answers
  • You kick a soccer ball with a speed of 31 m/s at an angle of 50 degrees. How long does it take the ball to reach the top of its
    10·1 answer
  • Assuming a mass of 0.04 g, what is the power exerted by the electrical forces on a fragment of fiber if the fragment has a veloc
    11·1 answer
  • Hello :) how to do 25 (b) ?
    15·1 answer
  • 16. PHYSICS The height h of a falling object is given by h = vt - gt2, where vis the initial velocity of the object, t is time,
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!