Answer:
Part a: When the road is level, the minimum stopping sight distance is 563.36 ft.
Part b: When the road has a maximum grade of 4%, the minimum stopping sight distance is 528.19 ft.
Explanation:
Part a
When Road is Level
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is this case is 0 as the road is level
Substituting values

So the minimum stopping sight distance is 563.36 ft.
Part b
When Road has a maximum grade of 4%
The stopping sight distance is given as

Here
- SSD is the stopping sight distance which is to be calculated.
- u is the speed which is given as 60 mi/hr
- t is the perception-reaction time given as 2.5 sec.
- a/g is the ratio of deceleration of the body w.r.t gravitational acceleration, it is estimated as 0.35.
- G is the grade of the road, which is given as 4% now this can be either downgrade or upgrade
For upgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% upgrade is 528.19 ft.</em>
For downgrade of 4%, Substituting values

<em>So the minimum stopping sight distance for a road with 4% downgrade is 607.59 ft.</em>
As the minimum distance is required for the 4% grade road, so the solution is 528.19 ft.
Answer:
The angle between the emergent blue and red light is 
Explanation:
We have according to Snell's law

Since medium from which light enter's is air thus 
Thus for blue incident light we have

Similarly using the same procedure for red light we have

Thus the absolute value of angle between the refracted blue and red light is

Answer:
C. 10kg to 10kg
Explanation:
You have to picture to it I think
According to the information given, the Heisenberg uncertainty principle would be given by the relationship

Here,
h = Planck's constant
= Uncertainty in velocity of object
= Uncertainty in position of object
m = Mass of object
Rearranging to find the position

Replacing with our values we have,


Therefore the uncertainty in position of electron is 
According to definition of general chemistry matter is any substance which has atleast a mass and occupies a volume.
Matter is of three types
- Solid
- Liquid
- Gas