Answer:
T = 2 T₀
Explanation:
To answer this question let's write the expression for electrical conductivity
σ = n e2 τ / m*
The relationship with resistivity is
ρ = 1 /σ
Whereby the resistance
R = ρ L / A = 1 /σ L / A
We see that there is no explicit relationship between time and resistance, there is only a dependence on the life time (τ) that depends on the properties of the material, not on its diameter or length.
As also the average velocity or electron velocity of electrons is constant, the time to cross 2 mm in length is twice as long as the time to cross a mm in length
T = 2 T₀
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
Saying english so we can help u
Potential energy = mgh
Potential energy = 10 x 9.8 x 1.3
Potential energy = 127.4 J
The unit of acceleration would be m/s² :)