Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.
Explanation:
Gravitational potential energy is the product of mass of object, height of object and gravitational field.
So, formula to calculate gravitational potential energy is as follows.
U = mgh
where,
m = mass of object
g = gravitational field =
h = height of object
(A) m = 5 kg and h = 2m
Therefore, its gravitational potential energy is calculated as follows.
(B) m = 8 kg and h = 2 m
Therefore, its gravitational potential energy is calculated as follows.
(C) m = 8 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.
(D) m = 5 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.
Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.
Answer:
A - elastic since many other fast food items could be considered close substitutes.
Explanation:
The price elasticity of demand is how much the demand of the Big Macs will change due to a 1% change in price. Should the elasticity be greater than 1, the Big Macs will be elastic. Should it be less than 1, the Big Macs are inelastic.
Demand elasticity is calculated as the percentage change in quantity demanded divided by a percentage change in price.
Since Big Macs are (i) a luxury good, and (ii) have close substitutes (other burgers available at McDonalds and other fast food stores), we will say their elasticity is greater than 1.
This means that the demand of Big Macs will change due to a 1% increase in price due to the presence of close substitutes.
Answer:
Explanation:
We are asked to find the force being applied to a book. According to Newton's Second Law of Motion, force is the product of mass and acceleration.
The mass of the book is 0.75 kilograms and the acceleration is 0.3 meters per square second. Substitute these values into the formula.
Multiply.
1 kilogram meter per second squared is equal to 1 Newton. Therefore, our answer of 0.225 kilogram meters per second squared is equal to 0.225 Newtons.
<u>0.225 Newtons of force</u> are applied to the book.
Even tho one is stronger then the other... they are both alike because they are still nuclear forces.