How much protein one should obtain from diet
Answer:
4 gram
Answer:
Faraday's constant will be smaller than it is supposed to be.
Explanation:
If the copper anode was not completely dry when its mass was measured, mass of the copper must be heavier than it should have been. Hence, the calculated Faraday’s constant would be smaller than it is supposed to be since when calculating Faraday’s Constant, the charge transferred is divided by the moles of electrons.
If they're different sizes and densities, you are able to separate the substances.
Answer:
To have the electronic configuration equal to 1s²2s²2p⁶3s²3p⁶4s²3d⁷, the chemical element must have an electrical charge equal to 27, that is, it must have 27 electrons, such as Cobalt (Co), for example.
Explanation:
The electronic configuration shown in the question above is known as the Linus Pauling distribution and represents the energy sub-levels that an electrically charged atom can have in relation to the amount of electrons it has.
The layers sub-levels are presented in the following order 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹º 4p⁶ 5s² 4d¹º 5p⁶ 6s² 4f14 5d¹º 6p⁶ 7s² 5f14 6d¹º 7p⁶. Where the small numbers represent the number of electrons in each sub-level and the large numbers represent the layers of electronic distribution.
Accordingly, we can see that an atom that has the configuration 1s²2s²2p⁶3s²3p⁶4s²3d⁷ has 27 electrons, like Cobalt.
Answer:
There is 52.33 grams of water produced.
Explanation:
Step 1: Data given
Mass of propane burned = 32.00 grams
Molar mass of propane = 44.1 g/mol
Oxygen is in excess
Molar mass of water = 18.02 g/mol
Step 2: The balanced equation
C3H8 + 5O2 → 4H2O + 3CO2
Step 3: Calculate moles of propane
Moles of propane = mass propane / molar mass of propane
Moles of propane = 32.00 grams / 44.1 g/mol
Moles of propane = 0.726 moles
Step 4: Calculate moles of H2O
Propane is the limiting reactant.
For 1 mol of propane consumed, we need 5 moles of O2 to produce 4 moles of H2O and 3 moles of CO2
For 0.726 moles of propane we'll have 4*0.726 = 2.904 moles of H2O
Step 5: Calculate mass of H2O
Mass of H2O = moles of H2O * molar mass of H2O
Mass of H2O = 2.904 moles * 18.02 g/mol
Mass of H2O = 52.33 grams
There is 52.33 grams of water produced.