The first option, collapsed in on itself.
The star's core mass becomes so dense that the resulting gravity implodes the star.
Interesting enough, the third option is kindof true too...some large and tenacious black holes that absorb other stars will form incredibly bright accretion disks around their perimeter before filling absorbing the star.
Because when the cells divide (resulting in more cells) the multicellular organism mantains its strong cells and when one cell is damaged the other cells compensate for that damaged cell.
Δ H reaction = q / n where q: amount of heat released and n is number of moles of substance.
q = m . C . ΔT where:
m = mass of substance (g)
C = Specific heat capacity (4.18)
ΔT = change in temperature = 24.25 - 23.16 = 1.09
q = 1000 x 4.18 x 1.09 = 4556 J = 4.556 kJ
number of moles (n) = Molarity (M) x Volume (L)
= 0.185 M x 0.07 L = 0.01295 mole
Δ H = q / n = - (4.556 kJ / 0.01295 mole) = -351.8 kJ / mol
Note: it is exothermic reaction (-ve sign) i.e. temperature is raised
Answer:
C8H17N
Explanation:
Mass of the unknown compound = 5.024 mg
Mass of CO2 = 13.90 mg
Mass of H2O = 6.048 mg
Next, we shall determine the mass of carbon, hydrogen and nitrogen present in the compound. This is illustrated below:
For carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C = 12/44 x 13.90 = 3.791 mg
For hydrogen, H:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H = 2/18 x 6.048 = 0.672 mg
For nitrogen, N:
Mass N = mass of unknown – (mass of C + mass of H)
Mass of N = 5.024 – (3.791 + 0.672)
Mass of N = 0.561 mg
Now, we can obtain the empirical formula for the compound as follow:
C = 3.791 mg
H = 0.672 mg
N = 0.561 mg
Divide each by their molar mass
C = 3.791 / 12 = 0.316
H = 0.672 / 1 = 0.672
N = 0.561 / 14 = 0.040
Divide by the smallest
C = 0.316 / 0.04 = 8
H = 0.672 / 0.04 = 17
N = 0.040 / 0.04 = 1
Therefore, the empirical formula for the compound is C8H17N
Answer:
which formula can be used to calculate the molar mass of hydrogen peroxide (H2O2)?
» <u>d.2 x molar mass of H + 2 x molar mass of O</u>
Explanation:
Since we've two hydrogen atoms and two oxygen atoms, we multiply each mass by 2

Which of the following statements best defines the actual yield of a reaction?
»<u> </u><u>d.The ratio of measured yield over stoichiometric yield</u>