Answer:
c. alkyne.
Explanation:
Hello there!
In this case, according to the attached file, it turns out possible for us to say that alkanes have only single-bonded carbon atoms, alkenes have two double-bonded carbon atoms and alkynes have two triple-bonded carbon atoms.
In such a way, according to the aforementioned definition, we infer that that an organic compound that contains only carbon and hydrogen and a triple bond (all the other bonds are single bonds) is classified as c. alkyne.
Regards!
Answer:Calculate The PH Of The Solution After The Addition Of The Following Amounts Of HCl. PLEASE HELP! SHOW ALL STEPS!! This problem has been solved!
Explanation:
Stir it,
Or as warmer water makes solutes dissolve faster Sarah can do that
Answer:
The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas = 104 kPa
= final pressure of gas = 52 kPa
= initial volume of gas = 
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.