The answer is: (5696 J) / (155 g) / (40.0 - 25.0)°C = 2.45 J/g·°C
62.23 = 1512.5001499999998 moles
Answer:
The answer to your question is below
Explanation:
Data
Substance = NaCl
moles of NaCl = 49
volume = 150 ml
Process
Molarity is a unit of concentration that makes a relation of the moles of a substance and the volume.
Molarity = moles / volume (L)
1.- Convert 150 ml to L
1000 ml ------------------ 1 L
150 ml ----------------- x
x = (150 x 1) / 1000
x = 0.15 L
2.- Substitution
Molarity = 49 / 0.15
Molarity = 326. 7
I have a doubt if the number of moles is 49 moles or 49μmoles
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L