Answer:
0.057 joules is needed to create the total rotational energy each second.
Explanation:
The energy rate is the ratio of total energy to time, which coincides with the definition of power at constant rate:




0.057 joules is needed to create the total rotational energy each second.
Answer:
It cancels recoil.
Explanation:
For each action there is an equal an opposite reaction.
The principle of conservation of momentum tell us that if a single spore were ejected the fern would suffer a recoil from it. This recoil would take energy and speed from the spore. But if they are ejected in pairs the recoil is canceled and all the energy is transferred to the spores resulting in higher speeds.
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
Answer:
Explanation:
This is an application of Newton's second Law.
Formula
F = m * a
F = 300 N
m = 100 kg
a = ?
F = m * a
300N = 100 kg * a Divide by 100
300N/100kg = a
a = 3 m/sec^2