Given Information:
Resistance of circular loop = R = 0.235 Ω
Radius of circular loop = r = 0.241 m
Number of turns = n = 10
Voltage = V = 13.1 V
Required Information:
Magnetic field = B = ?
Answer:
Magnetic field = 0.00145 T
Explanation:
In a circular loop of wire with n number of turns and radius r and carrying a current I induces a magnetic field B
B = μ₀nI/2r
Where μ₀= 4πx10⁻⁷ is the permeability of free space and current in the loop is given by
I = V/R
I = 13.1/0.235
I = 55.74 A
B = 4πx10⁻⁷*10*55.74/2*0.241
B = 0.00145 T
Therefore, the magnetic field at the center of this circular loop is 0.00145 T
Explanation:
the object will begin to move
Answer : The correct option is, (C) 17 m/s
Explanation :
Formula used :

where,
K.E = kinetic energy = 6.8 J
m = mass of object = 46 g = 0.046 kg (1 kg = 1000 g)
v = velocity
Now put all the given values in the above formula, we get:




Therefore, the ball's velocity be as it leaves the cannon is, 17 m/s