Explanation:
Ionic bonds are bonds formed as a result of the electrostatic attraction between two species.
- This bond type is an interatomic bond.
- It forms when two specie with a large electronegative difference between them combines.
- This is usually a metal and a non-metal.
- The metal loses its valence electrons and becomes positively charged.
- The non-metal gains the electron and becomes negatively charged.
- An electrostatic attraction between the two specie leads to the formation of an ionic bond.
- They are solids with a high melting point.
- They are soluble in polar solvents.
learn more:
Ionic bonds brainly.com/question/6071838
#learnwithBrainly
Explanation:
solid, liquids and gases are all made up of atoms and molecules
contrast
solids have a definite shape, liquids takes the shape of the container that contains it while gases do not have a shape
solids move about their mean positions, liquids move more freely while gases move in random motion
solids cannot be easily compressed, liquids can be compressed while gases can be easily compressed
It is 1 ounce. Bloodborne Pathogens can be transmitted when blood or body liquid from a tainted individual enters someone else's body by means of needle-sticks, human chomps, cuts, scraped areas, or through mucous films. Likewise, semen, vaginal discharges and salivation in dental methods are considered conceivably tainted body liquids.
Answer:
Hydrogen
Explanation:
Just to provide some background, an element is a pure substance consisting of only one type of atom. An atom is the smallest constituent of matter. All elements are comprised of a single type of atom (e.g., gold is composed of gold atoms, helium of helium atoms, phosphorus phosphorus, and so on).
A molecule is a group of two or more atoms. They can be the same atom (homonuclear), such as or different atoms (heteronuclear).
Some examples of homonuclear molecules include:
Hydrogen (H2)
Nitrogen (N2)
Phosphorus (P4)
Some examples of heteronuclear molecules include:
Carbon dioxide (CO2)
Sulfuric acid (H2SO4)
Methane (CH4)