Answer:
22)convex
23)sun (sunlight reflect of the off the surface of the moon
24)because of the way the atmosphere interacts with sunlight
25) transparent : glass,contact lenses,water,air
translucent: wax paper, oil paper, thin sheets
opaque : plastic, wood, leather
26)when light react with opaque: none of it passes though
when it reacts with transparent : it passes through
when it react with translucent : only some of it passes through, the light does not pass directly through the material
Explanation:
24 blue light is scattered in all directions by the tiny molecules of air in earth's atmosphere
Answer :
AgI should precipitate first.
The concentration of
when CuI just begins to precipitate is, 
Percent of
remains is, 0.0076 %
Explanation :
for CuI is 
for AgI is 
As we know that these two salts would both dissociate in the same way. So, we can say that as the Ksp value of AgI has a smaller than CuI then AgI should precipitate first.
Now we have to calculate the concentration of iodide ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Cu^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCu%5E%2B%5D%5BI%5E-%5D)
![1\times 10^{-12}=0.0079\times [I^-]](https://tex.z-dn.net/?f=1%5Ctimes%2010%5E%7B-12%7D%3D0.0079%5Ctimes%20%5BI%5E-%5D)
![[I^-]=1.25\times 10^{-10}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.25%5Ctimes%2010%5E%7B-10%7DM)
Now we have to calculate the concentration of silver ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ag^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BI%5E-%5D)
![8.3\times 10^{-17}=[Ag^+]\times 1.25\times 10^{-10}M](https://tex.z-dn.net/?f=8.3%5Ctimes%2010%5E%7B-17%7D%3D%5BAg%5E%2B%5D%5Ctimes%201.25%5Ctimes%2010%5E%7B-10%7DM)
![[Ag^+]=6.64\times 10^{-7}M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%3D6.64%5Ctimes%2010%5E%7B-7%7DM)
Now we have to calculate the percent of
remains in solution at this point.
Percent of
remains = 
Percent of
remains = 0.0076 %
The generic solution of the reaction that occurs would be writen as water + anhydrous salt = hydrated salt
chemical equation would look like this xH2O +AB = AB.xH2O
Following are important constant that used in present calculations
Heat of fusion of H2O = 334 J/g
<span>Heat of vaporization of H2O = 2257 J/g </span>
<span>Heat capacity of H2O = 4.18 J/gK
</span>
Now, energy required for melting of ICE = <span> 334 X 5.25 = 1753.5 J .......(1)
Energy required for raising </span><span>the temperature water from 0 oC to 100 oC = 4.18 X 5.25 X 100 = 2195.18 J .............. (2)
</span>Lastly, energy required for boiling water = <span> 2257X 5.25 = 11849.25 J ......(3)
</span><span>
Thus, total heat energy required for entire process = (1) + (2) + (3)
= 1753.5 + 2195.18 + 11849.25
= </span><span>15797.93 J
</span><span> = 15.8 kJ
</span><span>Thus, 15797.93 J of energy is needed to boil 5.25 grams of ice.</span>