Answer:
A: Agricultural Engineer
Explanation:
I had this same question for a test and got it right with a being the answer :)
Answer:
Given that
Mass flow rate ,m=2.3 kg/s
T₁=450 K
P₁=350 KPa
C₁=3 m/s
T₂=300 K
C₂=460 m/s
Cp=1.011 KJ/kg.k
For ideal gas
P V = m R T
P = ρ RT


ρ₁=2.71 kg/m³
mass flow rate
m= ρ₁A₁C₁
2.3 = 2.71 x A₁ x 3
A₁=0.28 m²
Now from first law for open system

For ideal gas
Δh = CpΔT
by putting the values


Q= - 45.49 KJ/kg
Q =- m x 45.49 KW
Q= - 104.67 KW
Negative sign indicates that heat transfer from air to surrounding
Answer:
40 ft
Explanation:
Assuming no loss of energy in the system of pulleys, the work done is the same whether you move the load directly or through the pulleys.
W = Fd . . . . . . . . work is the product of force and distance
F(10 ft) = (0.25F)(d) . . . . . where d is the distance we want to find
d = 10F/(0.25F) = 40
The rope will need to move 40 feet.
Answer:
specific energy = 2.65 ft
y2 = 1.48 ft
Explanation:
given data
average speed v = 6.5 ft/s
width = 5 ft
depth of the water y = 2 ft
solution
we get here specific energy that is express as
specific energy = y +
...............1
put here value and we get
specific energy =
specific energy = 2.65 ft
and
alternate depth is
y2 =
and
here Fr² =
Fr² = 0.8025
put here value and we get
y2 =
y2 = 1.48 ft