Answer:
volumetric flow rate = 
Velocity in pipe section 1 = 
velocity in pipe section 2 = 12.79 m/s
Explanation:
We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.
The density of water is = 997 kg/m³
density = mass/ volume
since we are given the mass, therefore, the volume will be mass/density
25/997 = 
volumetric flow rate = 
Average velocity calculations:
<em>Pipe section A:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

<em>Pipe section B:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

Answer:
The final temperature of water is 381.39 °C.
Explanation:
Given that
Mass of water = 5 kg
Heat transfer at constant pressure Q = 2960 KJ
Initial temperature = 240 °C
We know that heat transfer at constant pressure given as follows

We know that for water

Lets take final temperature of water is T
So


T=381.39 °C
So the final temperature of water is 381.39 °C.
Your Answer would be A I believe.
Answer:The awnser is 5
Explanation:Just divide all of it