Answer: 1.289 m
Explanation:
The path the cobra's venom follows since it is spitted until it hits the ground, is described by a parabola. Hence, the equations for parabolic motion (which has two components) can be applied to solve this problem:
<u>x-component:
</u>
(1)
Where:
is the horizontal distance traveled by the venom
is the venom's initial speed
is the angle
is the time since the venom is spitted until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the venom
is the final height of the venom (when it finally hits the ground)
is the acceleration due gravity
Let's begin with (2) to find the time it takes the complete path:
(3)
Rewritting (3):
(4)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving (6) we find the positive result is:
(7)
Substituting (7) in (1):
(8)
We finally find the horizontal distance traveled by the venom:
Answer:
Comets
Explanation:
Comets are planetary celestial bodies consisting of ice and dust, sometimes rocky particles formed in the region of the solar system. Long-period comets propagate towards the Sun by gravitational perturbations caused by passing stars. Some comets usually hyberbolic comets, move through the inner Solar System prior to entering the interstellar region. Short period comet lies beyond the orbit of the Neptune.
The Jovian planets include Jupiter, Saturn, Uranus, and Neptune.
Therefore, leftovers of comets (planetesimal bodies) formed in the region of the solar system that are now occupied by the Jovian planets is due to the dusty particles associated with the comets.
In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.
Answer:
15 cm
Explanation:
= Diameter of the coin = 15 mm
= Diameter of the image of coin = 5 mm
= distance of the coin from mirror = 15 cm
= distance of the image of coin from mirror = ?
Using the equation


= - 5 cm
= radius of curvature
Using the mirror equation


= - 15 cm
<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143