Pass a validated official test ?
The acceleration of gravity is inversely proportional to
the square of the distance from Earth's center.
The acceleration of gravity is 9.8 m/s² on the Earth's surface ...
6380 km from the center.
If the acceleration of gravity at 'h' is 4.9 m/s² ... 1/2 of what it is
on the surface, then the distance from the center is
(6380 x √2) = 9,023 km (rounded) ,
and 'h' is the distance above the surface
= (9,023 - 6,380) = 2,643 km (rounded) .
To solve this problem we will apply the concepts related to momentum and momentum on a body. Both are equivalent values but can be found through different expressions. The impulse is the product of the Force for time while the momentum is the product between the mass and the velocity. The result of these operations yields equivalent units.
PART A ) The Impulse can be calculcated as follows

Where,
F = Force
Change in time
Replacing,


PART B) At the same time the momentum follows the conservation of momentum where:
Initial momentum= Final momentum
And the change in momentum is equal to the Impulse, then

And

There is not initial momentum then



Let us start from considering monochromatic light as an incidence on the film of a thickness t whose material has an index of refraction n determined by their respective properties.
From this point of view part of the light will be reflated and the other will be transmitted to the thin film. That additional distance traveled by the ray that was reflected from the bottom will be twice the thickness of the thin film at the point where the light strikes. Therefore, this relation of phase differences and additional distance can be expressed mathematically as

We are given the second smallest nonzero thickness at which destructive interference occurs.
This corresponds to, m = 2, therefore


The index of refraction of soap is given, then

Combining the results of all steps we get

Rearranging, we find


