Answer:
1.876 J
Explanation:
First, let’s calculate the compression of the spring from the Hooke’s law:
F=kx,
here, F=75 N is the force acted on the spring, k=1500 N⁄m is the force constant of the spring, x is the compression of the spring.
Then, we get:
x=F/k=(75 N)/(1500 N/m)=0.05 m.
Finally, we can find the potential energy stored in the spring:
PE=1/2 kx^2=1/2∙1500 N/m∙(0.05 m)^2=1.875 J.
correct my answer if it's wrong ^^
A conductor that is conducting current generates a magnetic field everywhere around it. This magnetic field exerts force on the compass's magnetic needle, causing the needle to deviate.
Definition of Maxwell's rule
A current-conducting conductor creates a magnetic field everywhere around it. The magnetic needle of the compass experiences force from this magnetic field, which causes the needle to veer.
Equation for deflection
We have so far established that the total flux of electric field out of a closed surface is just the total enclosed charge multiplied by 1/ε0, ∫→E⋅d→A=q/ε0. This is Maxwell's first equation. It represents completely covering the surface with a large number of tiny patches having areas d→A.
To learn more about magnetic field refer : brainly.com/question/24761394
#SPJ4
Given : A ball of mass 40 g moving at a velocity of 4 m/s.
To find : Calculate the kinetic energy in joules ?
Solution :
The kinetic energy formula is given by,
where, v is the velocity v=4 m/s
m is the mass m=40 g
Convert g into kg,
Substitute the values,
Therefore, the kinetic energy is 0.32 Joules.
Answer:
Kelly's weight would be 688.47 Newtons.
Explanation:
1 Kilogram would be 9.81 Newtons.
Answer:
Shaft
coiled
generators
Kinetic
Electrical
Explanation:
By using moving shaft and coiled wire together, electric generators create electricity. Electric generators essentially convert kinetic energy (the energy of motion) into electric energy.