Answer:
8.40 m/s
Explanation:
Slope of the plot is 0.119
Slope of a plot is given by the change in y direction divided by the change in x direction
Here, the y axis represents inverse wavelength and the x axis represents frequency.
f = Frequency (Hz, assumed)
v = Phase velocity (m/s, assumed)
λ = Wavelength (m, assumed)
So, slope

Now,


The speed of sound travelling in the tube is 8.40 m/s
Answer:
So percentage error will be 2 %
Explanation:
We have given initial value of acceleration due to gravity 
And final value of acceleration due to gravity 
We have to find the percentage error
We know that percentage error is given by 
So
%
Answer:
The oldest stars in spiral galaxies are younger than the oldest stars in elliptical galaxies.
Explanation:
Spiral galaxies have a greater star formation than elliptical galaxies, since the latter contain less gas and dust. Therefore, the rate of creation of new stars is lower in elliptical galaxies. These galaxies are dominated by old stars, with a long evolution. While the spiral galaxies have stars with a faster evolution.
Answer:
4.18
Explanation:
Givens
The car's initial velocity
= 0 and covering a distance Δx = 1/4 mi = 402.336 m in a time interval t = 4.43 s.
Knowns
We know that the maximum static friction force is given by:
μ_s*n (1)
Where μ_s is the coefficient of static friction and n is the normal force.
Calculations
(a) First, we calculate the acceleration needed to achieve this goal by substituting the given values into a proper kinematic equation as follows:
Δx=
a=41 m/s
This is the acceleration provided by the engine. Applying Newton's second law on the car, so in equilibrium, when the car is about to move, we find that:

Substituting (3) into (1), we get:
μ_s*m*g
Equating this equation with (4), we get:
ma= μ_s*m*g
μ_s=a/g
=4.18
Answer:
a) 0.21N/C
b) counterclockwise
Explanation:
a) to find the magnitude of the electric field you can use the following formula:

A: area of the ring = pi*r^2
E: electric field
Ф_B: magnetic flux
In the line integral you can assume E as constant. Furthermore, you calculate the change in the magnetic flux by taking into account that the time interval is 1.12/0.21=5.33s. By replacing in the formula you obtain:


the magnitude if the induced electric field is 0.21N/C
b) By the Lenz's law you can conclude that the current has a direction in a counterclockwise