Answer: (a). E = 3.1656×10³⁴ √k/m
(b). f = 9.246 × 10¹² Hz
(c). Infrared region.
Explanation:
From Quantum Theory,
The energy of a proton is proportional to the frequency, from the equation;
E = hf
where E = energy in joules
h = planck's constant i.e. 6.626*10³⁴ Js
f = frequency
(a). from E = hf = 1 quanta
f = ω/2π
where ω = √k/m
consider 3 quanta of energy is lost;
E = 3hf = 3h/2π × √k/m
E = (3×6.626×10³⁴ / 2π) × √k/m
E = 3.1656×10³⁴ √k/m
(b). given from the question that K = 15 N/m
and mass M = 4 × 10⁻²⁶ kg
To get the frequency of the emitted photon,
Ephoton =hf = 3h/2π × √k/m (h cancels out)
f = 3h/2π × √k/m
f = 3h/2π × (√15 / 4 × 10⁻²⁶ )
f = 9.246 × 10¹² Hz
(c). The region of electromagnetic spectrum, the photon belongs to is the Infrared Spectrum because the frequency ranges from about 3 GHz to 400 THz in the electromagnetic spectrum.
Today's radio consists of an antenna, printed circuit board, resistors, capacitors, coils and transformers, transistors, integrated circuits, and a speaker. All of these parts are housed in a plastic case. An internal antenna consists of small-diameter insulated copper wire wound around a ferrite core.
Answer:
A
Explanation:
Due to ethanol's lower energy content, FFVs operating on E85 get roughly 15% to 27% fewer miles per gallon than when operating on regular gasoline, depending on the ethanol content.
Answer:
heat loss per 1-m length of this insulation is 4368.145 W
Explanation:
given data
inside radius r1 = 6 cm
outside radius r2 = 8 cm
thermal conductivity k = 0.5 W/m°C
inside temperature t1 = 430°C
outside temperature t2 = 30°C
to find out
Determine the heat loss per 1-m length of this insulation
solution
we know thermal resistance formula for cylinder that is express as
Rth =
.................1
here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity
so
heat loss is change in temperature divide thermal resistance
Q = 
Q = 
Q = 4368.145 W
so heat loss per 1-m length of this insulation is 4368.145 W