<span>What are some examples of monomers and oligomers?
</span>Organic molecules, such as proteins, carbohydrates, lipids and nucleic acids, are made of simple subunits called monomers. <span>Plasticizers are </span>oligomeric esters widely used to soften thermoplastics such as PVC and <span>urethane acrylate </span>.
<span>
</span><span>If a chemical compound accelerates and regulates metabolic reactions, which type of role does it play - structural or physiological?
</span>I believe the function that it plays would be physiological since it focuses more on the regulation of the reactions inside the body.
25% of 20
%=100
25/100 x 20
1/4 x 20
The answer is equal to 5
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />
Answer:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Explanation:
H₂²⁺(aq) + O₂²⁻(aq) + Mg²⁺(aq) + SO₃²⁻(aq) → Mg²⁺(aq) + SO²⁻₄(aq) + H₂O(l)
A careful observation of the equation above, shows that the equation is already balanced.
To obtain the net ionic equation, we simply cancel Mg²⁺ from both side of the equation as shown below:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Remembering that
d = m ÷ v
d = ?
m = 89 g
v = 10 cm³
Therefore:
d = 89 ÷ 10
d = 8,9 g÷cm³