Answer:
heyy tell me ur yo u tube ch annel name I'll subscribe it and how many sub scriber u have friend
Explanation:
and are u from Ireland?
Answer:
Online means connected to a network.
Credible means reliable or trustworthy
Cite means to quote from an article or book.
Answer:
We are given the trajectory of a projectile:
y=H+xtan(θ)−g2u2x2(1+tan2(θ)),
where H is the initial height, g is the (positive) gravitational constant and u is the initial speed. Since we are looking for the maximum range we set y=0 (i.e. the projectile is on the ground). If we let L=u2/g, then
H+xtan(θ)−12Lx2(1+tan2(θ))=0
Differentiate both sides with respect to θ.
dxdθtan(θ)+xsec2(θ)−[1Lxdxdθ(1+tan2(θ))+12Lx2(2tan(θ)sec2(θ))]=0
Solving for dxdθ yields
dxdθ=xsec2(θ)[xLtan(θ)−1]tan(θ)−xL(1+tan2(θ))
This derivative is 0 when tan(θ)=Lx and hence this corresponds to a critical number θ for the range of the projectile. We should now show that the x value it corresponds to is a maximum, but I'll just assume that's the case. It pretty obvious in the setting of the problem. Finally, we replace tan(θ) with Lx in the second equation from the top and solve for x.
H+L−12Lx2−L2=0.
This leads immediately to x=L2+2LH−−−−−−−−√. The angle θ can now be found easily.
They do in fact help build up coral reefs.
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.