Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>
Hello there.
<span>What is an acid according to Arrhenius?
</span><span>b. a substance that is a hydrogen ion donor
</span>
Answer:
thats cool mate
Explanation:
hope ya have a good day, im answering just for the points tbh
Answer:
The molecular formula of glucose is C₆H₁₂O₆
Explanation:
Empirical formula:
It is the simplest formula gives the ratio of smallest whole number of atoms.
Molecular formula:
It gives the total number of atoms in a molecule of compound.
The molecular formula and empirical formula can be related as follow:
Molecular formula = n × empirical formula
Given data:
Empirical formula = CH₂O
Molecular formula = ?
It is stated in given problem that molecular formula is the 6 times of the empirical formula.
Molecular formula = n × empirical formula
Molecular formula = 6 × CH₂O
Molecular formula = C₆H₁₂O₆
The molecular formula of glucose is C₆H₁₂O₆.