Answer:
The wavelength of light is 68 nm.
Explanation:
Given data:
Binding energy of electron = 176 × 10³ Kj/ mol or (1.76× 10⁶ j/mol)
Wavelength of light require to remove the electron = ?
Solution:
E = hc / λ
h = planck constant (6.63×10⁻³⁴ J/s)
c = speed of light = (3×10⁸ m/s)
The energy require per electron is
1.76 × 10⁶ j / 6.02× 10²³ = 2.92 × 10⁻¹⁸ J
Now we will put the values in formula,
E = hc / λ
λ = hc / E
λ = 6.63×10⁻³⁴ m².kg.s⁻¹ . 3×10⁸ m/s / 2.92 × 10⁻¹⁸ J
λ = 19.89×10⁻²⁶ m /2.92 × 10⁻¹⁸ (m².kg.s⁻² = J)
λ = 6.8 ×10⁻⁸ m
λ = 6.8 ×10⁻⁸ × 10⁹
λ = 68 nm
1. ionic compound , aqueous cations and aqueous anions
2. covalent compound aqueous covalent compound
<u>Explanation:</u>
1. A(n) <u>ionic compound </u> dissolves in water , H₂O(l), will produce <u>aqueous cations </u> and <u>aqueous anions </u>in solution.
When NaCl dissolves in water it will produce Na⁺ and Cl⁻ ions in solution
2. A(n) <u>covalent compound </u> dissolves in water , H₂O(l), will produce <u>aqueous covalent compound </u>in solution.
When Ammonia (NH₃) dissolves in water it forms aqueous ammonia, NH₃(aq)
Organic compounds, like carbohydrates, proteins, nucleic acids, and lipids, are all good examples of covalent compounds.
For the noble gasses, you get D, but metals are basically everywhere in the periodic table...
Answer:
C
Explanation:
Nebulization is the process by which a mist of a substance is introduced into a flame so that the free atoms are formed. The free atoms are now introduced into the light path for Atomic Absorption spectrophotometry.
The answer is A for number 1 and D for 2