Newton's subsequent law expresses that power is corresponding to what exactly is needed for an object of consistent mass to change its speed. This is equivalent to that item's mass increased by its speed increase.
We use Newtons, kilograms, and meters each second squared as our default units, albeit any proper units for mass (grams, ounces, and so forth) or speed (miles each hour out of every second, millimeters per second², and so on) could unquestionably be utilized also - the estimation is the equivalent notwithstanding.
Hence, the appropriate answer will be 399,532.
Net Force = 399532
Similarity : inverse square law for strength of force compared with distance.
Answer:
No the gravity of the moon pulls the water making high tide
Explanation:
First we gotta use an equation of motion:

Our vertical distance d= 100 m, initial vertical speed u = 0 m/s (because velocity is fully horizontal), and vertical acceleration a = 9.8 m/s2 because of gravity. Let's plug it all in!

Now we just need to solve for t:

Hit the calculators, and you'll get 4.5 seconds!