You have to use the equation PV=nRT.
P=pressure (in this case 1.89x10^3 kPa which equals 18.35677 atm)
1V=volume (in this case 685L)
n=moles (in this case the unknown)
R=gas constant (0.08206 (L atm)/(mol K))
T=temperature (in this case 621 K)
with the given information you can rewrite the ideal gas law equation as n=PV/RT.
n=(18.35677atm x 685L)/(0.08206atmL/molK x 621K)
n=246.8 moles
MgSO4 + Na3PO4 = Na2SO4 + Mg3(PO4)2
Answer: The products of Na3PO4 + MgSO4 are Na2SO4 + Mg3(PO4)2
Explanation:
Answer:
Option 2 and 4 are correct
Explanation:
The reactants in the attached image have more enthalpy and hence less stability as they are more reactive. Thus, Product is more stable than the reactants.
This is an addition reaction in which two reactants add up to form the product.
Very less activation energy is required as the reactants themselves are unstable, possess high energy and hence are very reactive.
Reactants have more energy than the products.
Answer:
The correct answer is 4
Explanation:
Boron trifluoride (BF₃) has a molecular geometry (as shown in the image in the question) referred to as trigonal planar; this is because each of the the fluorine atoms/molecules (bonded to the central boron atom) is placed in such a way that they form the three "end points"/"domains" of an equilateral triangle. Hence, the correct option is the last option.