Answer:
The pH of the sweater containing Hydrogen ion concentration
is
<u>8</u>
<u></u>
Explanation:
pH = It is the negative logarithm of activity (concentration) of hydrogen ions.
pH = -log([H+])
Now, In the question the concentration of [H+] ions is :
![[H^{+}]=1\times 10^{-8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B-8%7D)

use the relation:


pH = 8
Note : <em><u> 1 times 10 to the power of 8 must be" 1 times 10 to the power of -8"</u></em>
If the concentration is
![[H^{+}]=1\times 10^{8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B8%7D)
Then pH = -8 , which is not possible . So in that case the pH calculation is by other method
Temperature, salinity, and density are the group of factors are most important in determining the composition of ocean water.
a.)temperature, salinity, and density
<u>Explanation:</u>
The three fundamental factors that help in determining the composition of ocean water are temperature, salinity, and density. Temperature, saltiness, salinity, and density influence the thickness of seawater.
Enormous water masses of various densities are significant in the layering of the sea water (increasingly thick water sinks). As temperature builds water turns out to be less thick. As saltiness builds water gets denser. The temperature helps in deciding the pace of vanishing of the ocean.
Answer:
12.29 M
Explanation:
- The reaction that takes place is:
H₂SO₄ + 2NaOH → 2Na⁺ + SO₄⁻² + 2H₂O
- Now let's calculate the <u>moles of H₂SO₄ that were titrated</u>:
= 0.01229 mol H₂SO₄.
- Thus, the <u>concentration of the diluted solution is</u>:
0.01229 mol H₂SO₄ / 0.010 L = 1.229 M
- Finally, the <u>concentration of the original acid solution is:</u>
= 12.29 M
Answer:
3.33 M
Explanation:
It seems your question is incomplete, however, that same fragment has been found somewhere else in the web:
" <em>A chemist prepares a solution of silver nitrate (AgNO3) by measuring out 85.g of silver nitrate into a 150.mL volumetric flask and filling the flask to the mark with water.</em>
<em>Calculate the concentration in mol/L of the chemist's silver nitrate solution. Be sure your answer has the correct number of significant digits.</em> "
In this case, first we <u>calculate the moles of AgNO₃</u>, using its molecular weight:
- 85.0 g AgNO₃ ÷ 169.87 g/mol = 0.500 mol AgNO₃
Then we<u> convert the 150 mL of the volumetric flask into L</u>:
Finally we <u>divide the moles by the volume</u>:
- 0.500 mol AgNO₃ / 0.150 L = 3.33 M