The size of the atoms a and the number of holes in the atoms can be used to decode the element.
<h3>What are models?</h3>
A model is a miniature depiction of reality. Molecular models often consists of boxes that contain balls which are used to represent elements. In common parlance, the color is used to show the type of element.
Apart from the color, the size of the atoms a and the number of holes in the atoms can be used to decode the element.
Learn more about molecular models:brainly.com/question/156574
#SPJ1
<u>Answer:</u> The heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_{(product)}]-\sum [n\times \Delta H_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_{(C_4H_{10})})]-[(1\times \Delta H_{(C_4H_6)})+(2\times \Delta H_{(H_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_%7B10%7D%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_6%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_%7B%28H_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-2877.6))]-[(1\times (-2540.2))+(2\times (-285.8))]\\\\\Delta H_{rxn}=234.2J](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-2877.6%29%29%5D-%5B%281%5Ctimes%20%28-2540.2%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D234.2J)
Hence, the heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
Answer: Rate in terms of disappearance of
= ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of
= ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Rate in terms of disappearance of = ![-\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
Rate in terms of disappearance of = ![-\frac{1d[Cl_2]}{1dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BCl_2%5D%7D%7B1dt%7D)
Rate in terms of appearance of
= ![+\frac{1d[NOCl]}{2dt}](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1d%5BNOCl%5D%7D%7B2dt%7D)
Answer:
2.58 L
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!