Answer: 1.52 atm
Explanation:
Given that:
Volume of gas V = 10.0L
Temperature T = 35.0°C
Convert Celsius to Kelvin
(35.0°C + 273 = 308K)
Pressure P = ?
Number of moles = 0.6 moles
Molar gas constant R is a constant with a value of 0.0821 atm L K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 10.0L = 0.6 moles x (0.0821 atm L K-1 mol-1 x 308K)
p x 10.0L = 15.17 atm L
p = 15.17 atm L / 10.0L
p = 1.517 atm (round to the nearest hundredth as 1.52 atm)
Thus, the pressure of the gas is 1.52 atm
Explanation:
Formula for black body radiation is as follows.

where, P = power emitted
A = surface area of black body
= Stephen's constant = 
As area is given as 1.0
. Converting it into meters as follows.
(as 1 m = 100 cm)
= 
It is given that P = 201 watts. Hence,
= 
= 
T = 
= 8862.5 K
Thus, we can conclude that the temperature of the surface is 8862.5 K.
2Al+6HCl⇒3H₂+2AlCl₃
<h3>Further explanation
</h3>
Equalization of chemical reaction equations can be done using variables. Steps in equalizing the reaction equation:
• 1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c etc.
• 2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index between reactant and product
• 3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction
Al+HCl⇒H₂+AlCl₃
aAl+bHCl⇒cH₂+AlCl₃
Al, left=a, right=1⇒a=1
Cl, left=b, right=3⇒b=3
H, left=b, right=2c⇒b=2c⇒3=2c⇒c=3/2
the equation becomes :
Al+3HCl⇒3/2H₂+AlCl₃ x2
2Al+6HCl⇒3H₂+2AlCl₃
Answer:
The balanced equation tells us that 1 mole of Zn will produce 1 mole of H2.
1.566 g Zn x (1 mole Zn / 65.38 g Zn) = 0.02395 moles Zn
0.02395 moles Zn x (1 mole H2 / 1 mole Zn) = 0.02395 moles H2 produced
Now use the ideal gas law to find the volume V.
P = 733 mmHg x (1 atm / 760 atm) = 0.964 atm
T = 21 C + 273 = 294 K
PV = nRT
V = nRT/ P = (0.02395 moles H2)(0.0821 L atm / K mole)(294 K) / (0.964 atm) = 0.600 L
Use PV = nRT
(2 atm)(.3 liters) = n(8.314 mol*K)(303°K)
.6 = n(2519.142)
Divide by 2519.142
n = .00023818 mols of HCl * 36.46g of HCl/ 1 mol of HCl
Grams of HCl = 0.00868